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Let us dispense with mathematical details

Theorem. Consider a feasible system of the form

f (x) ≤ 0, Ax ≤ b

f (x) : Rn → R is of degree 3, with integer coefficients

A and b have integer coefficents; Ax ≤ b defines a polytope in Rn.

It is strongly NP-hard to test if there is a rational feasible solution.

f (x) linear → classical theory of polyhedra yields rational solution of
polynomial size

f (x) quadratic → Vavasis ∼ 1990 does same

BdPH Erlangen21 March 2021 2 / 21



Let us dispense with mathematical details

Theorem. Consider a feasible system of the form

f (x) ≤ 0, Ax ≤ b

f (x) : Rn → R is of degree 3, with integer coefficients

A and b have integer coefficents; Ax ≤ b defines a polytope in Rn.

It is strongly NP-hard to test if there is a rational feasible solution.

f (x) linear → classical theory of polyhedra yields rational solution of
polynomial size

f (x) quadratic → Vavasis ∼ 1990 does same

BdPH Erlangen21 March 2021 2 / 21



Let us dispense with mathematical details

Theorem. Consider a feasible system of the form

f (x) ≤ 0, Ax ≤ b

f (x) : Rn → R is of degree 3, with integer coefficients

A and b have integer coefficents; Ax ≤ b defines a polytope in Rn.

It is strongly NP-hard to test if there is a rational feasible solution.

f (x) linear → classical theory of polyhedra yields rational solution of
polynomial size

f (x) quadratic → Vavasis ∼ 1990 does same

BdPH Erlangen21 March 2021 2 / 21



Same proof

Theorem. Consider a feasible system of the form

fi (x) ≤ 0, 1 ≤ i ≤ m

Ax ≤ b

Each fi (x) is a quadratic with integer coefficients

A and b have integer coefficents; Ax ≤ b defines a polytope in Rn.

It is strongly NP-hard to test if there is a rational feasible solution.

→ m ≤ 7

f (x) quadratic→ Vavasis
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A little more involved

Theorem. Consider a system of the form

fi (x) ≤ 0, 1 ≤ i ≤ m

Ax ≤ b

Each fi (x) is a quadratic with integer coefficients

A and b have integer coefficients; Ax ≤ b defines a polytope in Rn

The system has rational feasible solutions

It is strongly NP-hard to test if there is a rational feasible solution of
polynomial size (polynomially many bits).
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More

Theorem. Consider an optimization problem of the form

F ∗ .
= min F (x)

s.t. Ax ≤ b

Here, F (x) is cubic
It is known that F∗ = −∞.

F , A and b have integer coefficients

It is strongly NP-hard to test if there is a rational feasible ray along
which F (x)→ −∞

Background:
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Background

Theorem. Given Q(x) quadratic , A, b with integer coefficients, it is
strongly NP-hard to test whether

−∞ .
= min Q(x)

s.t. Ax ≤ b

Murty and Kabady, 1987

However: if the problem is unbounded, there is a rational feasible ray
along which Q(x)→ −∞.

In fact unboundedness checking is in NP.
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More background

Theorem. Given T (x) cubic , A, b with integer coefficients, if

−∞ .
= min T (x)

s.t. Ax ≤ b

then

there is a feasible ray along which T (x)→ −∞.

Klatte, 2019

Our result→ NP-hard to decide if there is a rational feasible ray with the
desired properties

Such a rational ray always exists over Rn.
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Warning

Some of you have seen the following example, or similar

It is not the only such example

It is the simplest one I have. Worse behaviors can be produced.
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An unlucky QCQP

Gurobi 9, SCIP, etc: value ≈ −1.4142 Wrong, actual value ≈ −1.22
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Projection of the feasible region to (x1, x2) plane

Unique optimal solution,

which changes smoothly with small changes of
coefficients: problem is “well-posed”
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Projection of the feasible region to (x1, x2) plane

Solvers produce a point far from the feasible region
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What’s going on? Here is the problem that solvers think they see

min x2

−2x1 + x21 + x22 ≥ 2

2x1 + x21 + x22 ≥ 2

x21
10

+ x22 ≤ 2

2 )( 0 ,  

2 )( 0 ,  −
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But actually it has to handle

min x2

−2x1 + x21 + x22 ≥ 2 + sneaky2

2x1 + x21 + x22 ≥ 2

x21
10

+ x22 ≤ 2

and
distraction + sneaky2 >= 1/10

−a + distraction2 ≤ 0

−b + a2 ≤ 0

−sneaky + b2 ≤ 0

Second system implies sneaky > 0

BdPH Erlangen21 March 2021 13 / 21



The true feasible region in (x1, x2) projection

2 )( 0 ,  

2 )( 0 ,  −

Opt

Ball on right −2x1 + x2
1 + x2

2 ≥ 2 + sneaky2
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Some potential reactions

This problem instance is obviously artificial. It will not happen ’in practice’ –
real-world problems do not have a complicated geometry.

This is just roundoff error. We are used to roundoff error, nothing new here.

The infeasible solution with x2 = −
√

2 is feasible ’to machine tolerance’.
Nothing to worry about.
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More seriously

We have an expectation that a “near feasible” and “near optimal” solution
should be correctable to a “nearby” fully feasible solution with similar
objective value

This is true in the linear case. And only in the linear case?

Do we know how to do it in the general convex case?

We cannot do it in the nonconvex case. Because it is not true.

Practical comment: the community, and users, should get used to imprecise
solutions.

But what is the REAL problem?

The real problem is that a convex relaxation could cut-off the infeasible
solution. The relaxation could in fact be provided by the same code that
produced the infeasible solution, as an option.
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Relaxations applied to difficult example

The system on two real variables, d and s,

d + s2 ≥ 1, s − d2 ≥ 0

implies s > 0. How to prove it via relaxations?

[Ruth Misener] Start with RLT + (selective) SDP

P. Belloti (Couenne:) Sum RLT’d constraints, get ws,s + s ≥ 1 + wd ,d − d
Also (SDP) wd,d ≥ d2 and we ’remember’ that ws,s is a stand-in for s2 to ’get’:

s2 + s ≥ 1 + d 2 − d

which is nonconvex! But, from Domes & Neumaier (2010), implemented in
SCIP and ANTIGONE:

s2 + s ≥ 3/4

This implies s ≥ 0.323.
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Relaxations applied to difficult example

The system on two real variables, d and s,

d + s2 ≥ 1, s − d2 ≥ 0

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know s ≥ 0). Say we branch around s = 10.

Easy branch: s ≥ 10.

Hard branch, s ≤ 10.

Here ( RLT) 10 s ≥ ws,s . How? (10− s)s ≥ 0 (post-branch RLT)

Also d + ws,s ≥ 1 and s − wd ,d ≥ 0 imply ws,s + s ≥ 1 + wd ,d − d

Using SDP, the RHS is always at least 1 + d 2 − d . So ws,s + s ≥ 1 + d 2 − d

So (two blue inequalities) 11 s ≥ 3/4
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And how about ε−feasible solutions?

f (x) ≤ 0 → f (x) ≤ ε

Here is an updated version of the difficult example

min x2

−2x1 + x21 + x22 − d2
N ≥ 2

2x1 + x21 + x22 ≥ 2

x21
10

+ x22 ≤ 2

d1 + dN =
1

2
, 0 ≤ d1, d2

i ≤ di+1 (1 ≤ i ≤ N − 1)

Lemma. Unless ε < 2−2N cannot cut-off solution with dN = 0
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Another tough example
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ACOPF problem

min f (x)

s.t. gi (x) ≤ 0, 1 ≤ i ≤ m

gi (x) nonlinear, nonconvex

GO competition, the practice:

min f (x) +
∑
i

Φi (σi )

s.t. gi (x) ≤ σi , 1 ≤ i ≤ m

σ ≥ 0

Φi (): convex penalty
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