Complexity and Exactness in Polynomial Optimization

Daniel Bienstock¹, Alberto del Pia², Robert Hildebrand³

¹Columbia University, ²U. of Wisconsin, ³Virginia Tech

March 2021

Let us dispense with mathematical details

Theorem. Consider a feasible system of the form

 $f(x) \leq 0, \quad Ax \leq b$

• $f(x) : \mathbb{R}^n \to \mathbb{R}$ is of degree 3, with integer coefficients

• A and b have integer coefficients; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

・ 回 ト ・ ヨ ト ・ ヨ ト

Let us dispense with mathematical details

Theorem. Consider a feasible system of the form

 $f(x) \leq 0, \quad Ax \leq b$

• $f(x) : \mathbb{R}^n \to \mathbb{R}$ is of degree 3, with integer coefficients

• A and b have integer coefficents; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

It is strongly NP-hard to test if there is a rational feasible solution.

・ 回 ト ・ ヨ ト ・ ヨ ト

Let us dispense with mathematical details

Theorem. Consider a feasible system of the form

 $f(x) \leq 0, \quad Ax \leq b$

• $f(x) : \mathbb{R}^n \to \mathbb{R}$ is of degree 3, with integer coefficients

• A and b have integer coefficients; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

It is strongly NP-hard to test if there is a rational feasible solution.

- f(x) linear → classical theory of polyhedra yields rational solution of polynomial size
- f(x) quadratic \rightarrow Vavasis \sim 1990 does same

Theorem. Consider a feasible system of the form

$$f_i(x) \le 0, \quad 1 \le i \le m$$

 $Ax \le b$

- Each $f_i(x)$ is a quadratic with integer coefficients
- A and b have integer coefficients; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

Theorem. Consider a feasible system of the form

$$f_i(x) \le 0, \quad 1 \le i \le m$$

 $Ax \le b$

• Each $f_i(x)$ is a quadratic with integer coefficients

• A and b have integer coefficents; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

It is strongly NP-hard to test if there is a rational feasible solution.

Theorem. Consider a feasible system of the form

$$f_i(x) \le 0, \quad 1 \le i \le m$$

 $Ax \le b$

• Each $f_i(x)$ is a quadratic with integer coefficients

• A and b have integer coefficents; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

It is strongly NP-hard to test if there is a rational feasible solution.

 $\rightarrow m \leq 7$

(4) (3) (4) (4) (4)

Theorem. Consider a feasible system of the form

$$f_i(x) \le 0, \quad 1 \le i \le m$$

 $Ax \le b$

• Each $f_i(x)$ is a quadratic with integer coefficients

• A and b have integer coefficents; $Ax \leq b$ defines a polytope in \mathbb{R}^n .

It is strongly NP-hard to test if there is a rational feasible solution.

 $\rightarrow m \leq 7$

f(x) quadratic \rightarrow Vavasis

A little more involved

Theorem. Consider a system of the form

$$f_i(x) \le 0, \quad 1 \le i \le m$$

 $Ax \le b$

- Each $f_i(x)$ is a quadratic with integer coefficients
- A and b have integer coefficients; $Ax \leq b$ defines a poly**tope** in \mathbb{R}^n
- The system has rational feasible solutions

A little more involved

Theorem. Consider a system of the form

$$f_i(x) \le 0, \quad 1 \le i \le m$$

 $Ax \le b$

- Each $f_i(x)$ is a quadratic with integer coefficients
- A and b have integer coefficients; $Ax \leq b$ defines a poly**tope** in \mathbb{R}^n
- The system has rational feasible solutions

It is strongly NP-hard to test if there is a **rational** feasible solution of **polynomial size** (polynomially many bits).

Theorem. Consider an optimization problem of the form

 $F^* \doteq \min F(x)$ s.t. $Ax \le b$

- Here, F(x) is *cubic*
- It is known that $F^* = -\infty$.
- F, A and b have integer coefficients

Theorem. Consider an optimization problem of the form

 $F^* \doteq \min F(x)$ s.t. $Ax \le b$

- Here, F(x) is *cubic*
- It is known that $F^* = -\infty$.
- F, A and b have integer coefficients

It is strongly NP-hard to test if there is a rational feasible ray

(4) (日本)

Theorem. Consider an optimization problem of the form

 $F^* \doteq \min F(x)$ s.t. $Ax \le b$

- Here, F(x) is *cubic*
- It is known that $F^* = -\infty$.
- F, A and b have integer coefficients

It is strongly NP-hard to test if there is a rational feasible ray along which $F(x) \rightarrow -\infty$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Theorem. Consider an optimization problem of the form

 $F^* \doteq \min F(x)$ s.t. $Ax \le b$

- Here, F(x) is *cubic*
- It is known that $F^* = -\infty$.
- F, A and b have integer coefficients

It is strongly NP-hard to test if there is a rational feasible ray along which $F(x) \rightarrow -\infty$

Background:

イロト イポト イヨト イヨト 二日

Background

Theorem. Given Q(x) quadratic, A, b with integer coefficients, it is strongly NP-hard to test whether

$$-\infty \doteq \min Q(x)$$

s.t. $Ax \le b$

Murty and Kabady, 1987

Background

Theorem. Given Q(x) quadratic, A, b with integer coefficients, it is strongly NP-hard to test whether

 $-\infty \doteq \min Q(x)$ s.t. $Ax \le b$

Murty and Kabady, 1987

However: if the problem is unbounded, there is a rational feasible ray along which $Q(x) \rightarrow -\infty$.

In fact unboundedness checking is in NP.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. Given T(x) cubic, A, b with integer coefficients, if

 $-\infty \doteq \min T(x)$ s.t. $Ax \le b$

then

Theorem. Given T(x) cubic, A, b with integer coefficients, if

 $-\infty \doteq \min T(x)$ s.t. $Ax \le b$

then

there is a **feasible ray** along which $T(x) \rightarrow -\infty$.

Klatte, 2019

イロト イポト イヨト イヨト

Theorem. Given T(x) cubic, A, b with integer coefficients, if

 $-\infty \doteq \min T(x)$ s.t. $Ax \le b$

then

there is a **feasible ray** along which $T(x) \rightarrow -\infty$.

Klatte, 2019

Our result \rightarrow NP-hard to decide if there is a **rational** feasible ray with the desired properties

イロト イポト イヨト イヨト 二日

Theorem. Given T(x) cubic, A, b with integer coefficients, if

 $-\infty \doteq \min T(x)$ s.t. $Ax \le b$

then

there is a **feasible ray** along which $T(x) \rightarrow -\infty$.

Klatte, 2019

Our result \rightarrow NP-hard to decide if there is a **rational** feasible ray with the desired properties

Such a rational ray **always exists** over \mathbb{R}^n .

- 本間 と く ヨ と く ヨ と 二 ヨ

Warning

• Some of you have seen the following example, or similar

(日)

Warning

- Some of you have seen the following example, or similar
- It is not the only such example

Warning

- Some of you have seen the following example, or similar
- It is **not** the only such example
- It is the simplest one I have. Worse behaviors can be produced.

An unlucky QCQP

```
Minimize
    x2
Subject To
    o1: -2 x1 + [ x1^2 + x2^2 - sneaky^2 ] >= 2
    o2: 2 x1 + [ x1^2 + x2^2 ] >= 2
    e1: [ .1 x1^2 + x2^2 ] <= 2
    bad: distraction + [ sneaky^2 ] >= 0.1
joke1: - a + [ distraction^2 ] <= 0.0
joke2: - b + [ a^2 ] <= 0.0
cruel: - sneaky + [ b^2 ] <= 0.0</pre>
```

Bounds x1 free x2 free End

イロト イポト イヨト イヨト

An unlucky QCQP

```
Minimize
      x2
  Subject To
  o1: -2 x1 + [ x1<sup>2</sup> + x2<sup>2</sup> - sneaky<sup>2</sup> ] >= 2
  o2: 2 x1 + [ x1<sup>2</sup> + x2<sup>2</sup> ] >= 2
  e1: [ .1 x1<sup>2</sup> + x2<sup>2</sup> ] <= 2
  bad: distraction + [ sneaky^2 ] >= 0.1
joke1: - a + [ distraction^2 ] <= 0.0</pre>
ioke2: - b + [ a^2 ] <= 0.0
cruel: - sneaky + [ b^2 ] <= 0.0
Bounds
x1 free
x2 free
Fnd
```

Gurobi 9, SCIP, etc: value ≈ -1.4142

通 ト イ ヨ ト イ ヨ ト

An unlucky QCQP

Gurobi 9, SCIP, etc: value ≈ -1.4142 Wrong, actual value ≈ -1.22

BdPH

イロト イヨト イヨト イ

Unique optimal solution,

в	d	Р	н

Unique optimal solution, which changes smoothly with small changes of coefficients

BdPH	Erlangen21			March 2021	_	10/21
	4	< 🗗 🕨	1 2		-	*) Q (*

Unique optimal solution, which changes smoothly with small changes of coefficients: problem is "well-posed"

BdPH	Erlangen21	March 2021	10 / 21

Solvers produce a point far from the feasible region

в	а	Р	н	

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

What's going on? Here is the problem that solvers think they see

A (10) F (10) F (10)

But actually it has to handle

$$\begin{array}{rcl} \min & x_2 \\ -2x_1 &+ & x_1^2 &+ & x_2^2 &\geq & 2 + {\rm sneaky}^2 \\ 2x_1 &+ & x_1^2 &+ & x_2^2 &\geq & 2 \\ && & \frac{x_1^2}{10} + x_2^2 &\leq & 2 \end{array}$$

and

$$\begin{array}{rcl} \mbox{distraction} + \mbox{sneaky}^2 &>= 1/10 \\ & -a + \mbox{distraction}^2 &\leq 0 \\ & -b + a^2 &\leq 0 \\ & -\mbox{sneaky} + b^2 &\leq 0 \end{array}$$

Second system implies sneaky > 0

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The true feasible region in (x_1, x_2) projection

Ball on right $-2\mathbf{x}_1 + \mathbf{x}_1^2 + \mathbf{x}_2^2 \ge 2 + \text{sneaky}^2$

Image: A math a math

Some potential reactions

 This problem instance is obviously artificial. It will not happen 'in practice' – real-world problems do not have a complicated geometry.

→ Ξ →

Some potential reactions

- This problem instance is obviously artificial. It will not happen 'in practice' real-world problems do not have a complicated geometry.
- This is just roundoff error. We are used to roundoff error, nothing new here.

Some potential reactions

- This problem instance is obviously artificial. It will not happen 'in practice' real-world problems do not have a complicated geometry.
- This is just roundoff error. We are used to roundoff error, nothing new here.
- The infeasible solution with $x_2 = -\sqrt{2}$ is feasible 'to machine tolerance'. Nothing to worry about.

• We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case.

★ Ξ ► 4

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case. And only in the linear case?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case. And only in the linear case?
- Do we know how to do it in the general convex case?

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case. And only in the linear case?
- Do we know how to do it in the general convex case?
- We cannot do it in the nonconvex case.

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case. And only in the linear case?
- Do we know how to do it in the general convex case?
- We cannot do it in the nonconvex case. Because it is not true.
- Practical comment: the community, and users, should get used to *imprecise* solutions.

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case. And only in the linear case?
- Do we know how to do it in the general convex case?
- We cannot do it in the nonconvex case. Because it is not true.
- Practical comment: the community, and users, should get used to *imprecise* solutions.
- But what is the **REAL** problem?

- We have an expectation that a "near feasible" and "near optimal" solution should be *correctable* to a "nearby" fully feasible solution with similar objective value
- This is true in the linear case. And only in the linear case?
- Do we know how to do it in the general convex case?
- We cannot do it in the nonconvex case. Because it is not true.
- Practical comment: the community, and users, should get used to *imprecise* solutions.
- But what is the **REAL** problem?
- The real problem is that a convex relaxation could cut-off the infeasible solution. The relaxation could in fact be provided by the same code that produced the infeasible solution, as an option.

A B b A B b

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

A D N A B N A B N A B N

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

[Ruth Misener] Start with RLT + (selective) SDP

P. Belloti (Couenne:) Sum RLT'd constraints, get $w_{s,s} + s \ge 1 + w_{d,d} - d$ Also (SDP) $w_{d,d} \ge d^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

[Ruth Misener] Start with RLT + (selective) SDP

P. Belloti (Couenne:) Sum RLT'd constraints, get $w_{s,s} + s \ge 1 + w_{d,d} - d$ Also (SDP) $w_{d,d} \ge d^2$ and we 'remember' that $w_{s,s}$ is a stand-in for s^2 to 'get':

$$\boldsymbol{s}^2 + \boldsymbol{s} \geq 1 + \boldsymbol{d}^2 - \boldsymbol{d}$$

which is **nonconvex**! But, from Domes & Neumaier (2010), implemented in SCIP and ANTIGONE:

$$s^2 + s \geq 3/4$$

This implies $s \ge 0.323$.

イロト イポト イヨト イヨト 二日

The system on two real variables, d and s,

$$d + s^2 \geq 1, \ s - d^2 \geq 0$$

implies s > 0. How to prove it via relaxations?

The system on two real variables, d and s,

$$d + s^2 \geq 1, \ s - d^2 \geq 0$$

implies s > 0. How to prove it via relaxations?

Another way: **branch** on *s* (already know $s \ge 0$).

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10.

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$.

イロト 不得 トイヨト イヨト 二日

The system on two real variables, d and s,

$$d + s^2 \geq 1, \ s - d^2 \geq 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$.

Hard branch, $s \leq 10$.

イロト 不得 トイヨト イヨト 二日

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$. Hard branch, $s \le 10$. Here (RLT) $10 \ s \ge w_{s,s}$.

イロト 不得下 イヨト イヨト 二日

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$. Hard branch, $s \le 10$. Here (RLT) $10 \ s \ge w_{s,s}$. How? $(10 - s)s \ge 0$

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$. Hard branch, $s \le 10$. Here (RLT) $10 \ s \ge w_{s,s}$. How? $(10 - s)s \ge 0$ (post-branch RLT) Also $d + w_{s,s} \ge 1$ and $s - w_{d,d} \ge 0$ imply $w_{s,s} + s \ge 1 + w_{d,d} - d$

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$. Hard branch, $s \le 10$. Here (RLT) $10 \ s \ge w_{s,s}$. How? $(10 - s)s \ge 0$ (post-branch RLT) Also $d + w_{s,s} \ge 1$ and $s - w_{d,d} \ge 0$ imply $w_{s,s} + s \ge 1 + w_{d,d} - d$ Using SDP, the RHS is always at least $1 + d^2 - d$.

The system on two real variables, d and s,

$$d + s^2 \ge 1, \ s - d^2 \ge 0$$

implies s > 0. How to prove it via relaxations?

Another way: branch on s (already know $s \ge 0$). Say we branch around s = 10. Easy branch: $s \ge 10$. Hard branch, $s \le 10$. Here (RLT) $10 \ s \ge w_{s,s}$. How? $(10 - s)s \ge 0$ (post-branch RLT) Also $d + w_{s,s} \ge 1$ and $s - w_{d,d} \ge 0$ imply $w_{s,s} + s \ge 1 + w_{d,d} - d$ Using SDP, the RHS is always at least $1 + d^2 - d$. So $w_{s,s} + s \ge 1 + d^2 - d$ So (two blue inequalities) $11 \ s \ge 3/4$

メロト メポト メヨト メヨト

$$f(x) \leq 0 \quad \rightarrow \quad f(x) \leq \epsilon$$

メロト メポト メヨト メヨト

$$f(\mathbf{x}) \leq 0 \quad \rightarrow \quad f(\mathbf{x}) \leq \epsilon$$

Here is an updated version of the difficult example

$$d_1 + d_N = rac{1}{2}, \quad 0 \leq d_1, \quad d_i^2 \leq d_{i+1} \; (1 \leq i \leq N-1)$$

< □ > < 同 > < 回 > < Ξ > < Ξ

$$f(\mathbf{x}) \leq 0 \quad \rightarrow \quad f(\mathbf{x}) \leq \epsilon$$

Here is an updated version of the difficult example

$$d_1 + d_N = rac{1}{2}, \quad 0 \leq d_1, \quad d_i^2 \leq d_{i+1} \ (1 \leq i \leq N-1)$$

Lemma. Unless $\epsilon < 2^{-2^N}$ cannot cut-off solution with $d_N = 0$

A D N A B N A B N A B N

Another tough example

```
Minimize
   [ - x2_1^2 - x2_2^2 ]/2
Subject To
o1: -2 \times 1 + [ \times 1^2 + \times 2 \times 1^2 + \times 2 \times 2^2 ] \ge 2
o2: 2 x1 + [ x1^2 + x2_1^2 + x2_2^2 ] >= 2
e1: [ .1 x1^2 + x2_1^2 + x2_2^2 - x4_1^2 - x4_2^2 ] <= 0
op1: -2 x3 + [ x3<sup>2</sup> + x4 1<sup>2</sup> + x4 2<sup>2</sup> - sneaky<sup>2</sup> ] >= 2
op2: 2 x3 + [ x3^2 + x4_1^2 + x4_2^2 ] >= 2
ep1: [ .1 x3<sup>2</sup> + x4 1<sup>2</sup> + x4 2<sup>2</sup> ] <= 2
  bad: distraction + [ sneakv^2 ] >= 0.1
joke1: - a + [ distraction^2 ] <= 0.0
ioke2: -b + [a^2] <= 0.0
cruel: - sneaky + [ b^2 ] <= 0.0
```

End

Relevant work

- Renegar 80s, 90s. Computing solutions to algebraic systems.
- Basu, Pollack, Roy (2006). Algorithms in Real Algebraic Geometry.
- Geronimo, Perrucci, Tsigaridas (2013). Minima of polynomials over semi-algebraic sets.
- **O'Donnell** (2017). SOS systems probably require exponentially many bits.
- Waki, Nakata, Muramatsu (2012) SDPs arising in SOS systems can give rise to premature 'proofs'.

• • = • • = •

Exploring the Power Flow Solution Space Boundary

Ian A. Hiskens, Senior Member and Robert J. Davy

Exploring the Power Flow Solution Space Boundary

Ian A. Hiskens, Senior Member and Robert J. Davy

Fig. 6. Three bus system.

• • = • •

Exploring the Power Flow Solution Space Boundary

Ian A. Hiskens, Senior Member and Robert J. Davy

Fig. 6. Three bus system.

Fig. 13. Solution space, P1-Q2-P2 view.

ACOPF problem

$$\begin{array}{lll} \min & f(x) \\ \text{s.t.} & g_i(x) &\leq 0, \quad 1 \leq i \leq m \end{array}$$

 $g_i(x)$ nonlinear, nonconvex

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

ACOPF problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g_i(x) &\leq 0, \quad 1 \leq i \leq m \end{array}$$

 $g_i(x)$ nonlinear, nonconvex

GO competition, the practice:

$$\begin{array}{rll} \min & f(x) + \sum_{i} \Phi_{i}(\sigma_{i}) \\ & \text{s.t.} & g_{i}(x) & \leq & \sigma_{i}, \quad 1 \leq i \leq m \\ & \sigma & \geq & 0 \end{array}$$

 Φ_i (): convex *penalty*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ACOPF problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g_i(x) &\leq 0, \quad 1 \leq i \leq m \end{array}$$

 $g_i(x)$ nonlinear, nonconvex

GO competition, the practice:

$$\begin{array}{rll} \min & f(x) + \sum_{i} \Phi_{i}(\sigma_{i}) \\ & \text{s.t.} & g_{i}(x) & \leq & \sigma_{i}, \quad 1 \leq i \leq m \\ & \sigma & \geq & 0 \end{array}$$

 Φ_i (): convex *penalty*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >