

Modeling and simulation of coupled gas and power networks Joint work with T. Mühlpfordt, T. Faulwasser, S. Göttlich and O. Kolb

Simone Göttlich and Eike Fokken

University of Mannheim

2nd of March 2021

Motivation

Challenges of transition to renewable energy are especially

- the storage of energy
- fast reaction to demand peaks

²Wind turbine: https://www.pexels.com/photo/agriculture-alternative-energy-clouds-countryside-414837/

¹Power plant: https://pixabay.com/photos/romania-power-plant-electricity-2765289/

Motivation

- Gas power plants react fast
- Potential for conjunction with Power-to-Gas plants as long term energy storage

Gas turbine

 $^{{}^3} Gas \ turbine: \ https://commons.wikimedia.org/wiki/File:GE_H_series_Gas_Turbine.jpg$

Overview

1 Model

2 Bernoulli coupling

3 Scenario

4 Results

Overview

1 Model

2 Bernoulli coupling

3 Scenario

4 Results

Brief model review

Brief model review

- network is modeled as a directed graph
- edges $\hat{=}$ different components (pipelines, compressors, ...) \rightarrow algebraic equations, PDEs
- nodes
 junctions
 - $\rightarrow~$ boundary conditions e.g. demand of a load
 - \rightarrow coupling conditions e.g. Kirchhoff laws, mass conservation)

Power model

• AC Powerflow Equations (Parameters *G_{kj}*, *B_{kj}*):

$$P_{k} = \sum_{j \in \text{nodes}} |V_{k}| |V_{j}| [G_{kj} \cos(\phi_{k} - \phi_{j}) + B_{kj} \sin(\phi_{k} - \phi_{j})]$$
$$Q_{k} = \sum_{j \in \text{nodes}} |V_{k}| |V_{j}| [G_{kj} \sin(\phi_{k} - \phi_{j}) - B_{kj} \cos(\phi_{k} - \phi_{j})]$$

• PQ-/loads, PV-/generators, V ϕ /Slack Bus

Gas model

- Dynamics in every pipe: isentropic Euler equations
 - mass balance: $\partial_t \rho + \partial_x q = 0$
 - flow balance: $\partial_t q + \partial_x \left(p(\rho) + q^2/\rho \right) = -\lambda (q/\rho) \frac{q|q|}{2D\rho}$
 - well-posed⁴ isothermal pressure law with z-factor: $p(\rho) = \frac{a\rho}{1+b\rho}$

⁴F. et al., Modeling and simulation of sector-coupled networks: A gas-power benchmark, In: Mathematical MSO for Power Engineering and Management(2021)

Gas model

• conservation of mass and equality of pressure as coupling conditions:

$$p(\rho_1(t)) = p(\rho_2(t)) = p(\rho_3(t))$$
$$q_1(t) = q_2(t) + q_3(t)$$

Coupling of gas and power

- Gas consumption depends linearly on the real power demand P(t): $q(P(t)) = T_{GtP} \cdot P(t)$
- Power consumption depends linearly on the gas demand q(t): $P(q(t)) = T_{PtG} \cdot q(t)$
- T_{GtP}/T_{PtG} : efficiency of the respective plant

Overview

1 Model

2 Bernoulli coupling

3 Scenario

4 Results

Bernoulli coupling

Pressure coupling:

$$p(\rho_1) = p(\rho_2) = p(\rho_3)$$

 $q_1 = q_2 + q_3$

⁵Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow., SIAM J. Appl. Math. 75 (2015), no. 2

Bernoulli coupling

Pressure coupling:

$$egin{aligned} & H(
ho_1, q_1) = H(
ho_2, q_2) = H(
ho_3, q_3) \ & q_1 = q_2 + q_3 \ & H_p(
ho, q) = p(
ho) \end{aligned}$$

 $^{{}^{5}}$ Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow., SIAM J. Appl. Math. 75 (2015), no. 2

Bernoulli coupling

Pressure coupling:

$$egin{aligned} H(
ho_1, q_1) &= H(
ho_2, q_2) = H(
ho_3, q_3) \ q_1 &= q_2 + q_3 \ H_p(
ho, q) &= p(
ho) \end{aligned}$$

Unphysical: Bernoulli equation demands lower pressure for faster flow.

⁵Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow., SIAM J. Appl. Math. 75 (2015), no. 2

E.Fokken - Modeling of gas-power networks

Bernoulli coupling

Pressure coupling:

$$egin{aligned} & H(
ho_1, q_1) = H(
ho_2, q_2) = H(
ho_3, q_3) \ & q_1 = q_2 + q_3 \ & H_p(
ho, q) = p(
ho) \end{aligned}$$

Unphysical: Bernoulli equation demands lower pressure for faster flow.

Bernoulli coupling⁵:

$$H_B(
ho,q) = rac{1}{2}v^2 + \int rac{p'(\hat
ho)}{\hat
ho} \,\mathrm{d}\hat
ho$$

Equivalent to H_p , except for $\frac{1}{2}v^2$, but respects Bernoulli equation.

 $^{{}^{5}}$ Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow., SIAM J. Appl. Math. 75 (2015), no. 2

Discretization

- Powerflow problem is solved for every time step.
- Discretization of the isentropic Euler equations $y_t + f(y)_x = g(y)$ is done via an implicit box scheme⁶:

$$\frac{Y_{j-1}^{n+1}+Y_{j}^{n+1}}{2} = \frac{Y_{j-1}^{n}+Y_{j}^{n}}{2} - \frac{\Delta t}{\Delta x} \left(f(Y_{j}^{n+1}) - f(Y_{j-1}^{n+1}) \right) + \frac{\Delta t}{2} \left(g(Y_{j-1}^{n+1}) + g(Y_{j}^{n+1}) \right)$$

where $Y_j^n \approx y$ is the cell average.

Scheme is only linear but is not constrained by the CFL condition
 ⇒ big time steps.

⁶Bales, Kolb, Lang, An implicit box scheme for subsonic compressible flow with dissipative source term, Numer. Algorithms 53(2), S.293-307 (2010)

Software

Grazer will be an open source tool for solving power-grid and gas-network simulation problems with the following properties:

- Software tests
- full standard compliance (C++17) and compiler support for GCC, Clang, MSVC.
- free software: GNU Affero General Public License 3.0

Grazer will be released in the summer of 2021.

Overview

1 Model

2 Bernoulli coupling

4 Results

<u>UNIVERSITÄT</u> Mannheim

Realistically sized gas network

Gaslib-134, approximation of a greek gas network

⁷Schmidt et al., GasLib – A Library of Gas Network Instances, Data 2(4), Art. 40 (2017)

CC-BY-SA, in part from OpenStreetMap

E.Fokken - Modeling of gas-power networks

Gaslib-134⁷:

- 86 pipelines
- 3 inflow nodes
- 45 outflow nodes
- Usual pressure range: 20 – 100bar
- pipeline length:
 0.5 80km

Benchmark power network

ieee-300 benchmark network

ieee-3008:

- 69 generator nodes
- 231 load nodes
- 411 transmission lines
- order of magnitude of national high power networks

Created with https://immersive.erc.monash.edu/stac/

⁸Zimmerman, Murillo-Sánchez, Thomas, MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education, IEEE Transactions Power Systems (2011)

Benchmark power network

ieee-300 benchmark network

ieee-3008:

- 69 generator nodes
- 231 load nodes
- 411 transmission lines
- order of magnitude of national high power networks

Coupling:

• 10 gas-power conversion plants

Created with https://immersive.erc.monash.edu/stac/

⁸Zimmerman, Murillo-Sánchez, Thomas, MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education, IEEE Transactions Power Systems (2011)

Gas-power conversion

We choose a constant efficiency of 40% for gas power plants:

$$P_{\rm el} = T_{\rm GtP} \cdot q$$

and one of 72% for the power-to-gas conversion⁹:

$$q = T_{\mathsf{PtG}} \cdot P_{\mathsf{el}}$$

with $T_{GtP} \approx 16 \text{ MJ kg}^{-1}$ and $T_{PtG} \approx 0.017 \text{ kg MJ}^{-1}$. This yields for the round trip *Power Gas Power* an efficiency of 28.8%.

⁹Trimis et al., Potenzial der thermisch integrierten Hochtemperaturelektrolyse und Methanisierung für die Energiespeicherung durch Power-to-Gas (PtG),gfw Gas 155 (2014) ,no. 1-2

Simulation

- Simulation time T = 24 h with $\Delta t = 0.5 \text{ h}$
- $\Delta x \leq 10 \text{ km}$
- 10 gas-power conversion nodes
- Power demand: $P_{\text{demand}} = P_{\text{s}} + P_{\text{v}} \sin(2\pi \frac{t}{24h})$
- Power generation in the power grid remains constant
- Surplus demand must be satisfied by gas power plants
- During low demand, excess power is converted to gas

Overview

1 Model

2 Bernoulli coupling

3 Scenario

4 Results

Results: Gas-power conversion

Results: Pressure coupling vs. Bernoulli coupling

$\max \left p_p - p_b \right $	$\max \frac{\left p_{p}-p_{b}\right }{p_{p}}$
0.2 bar	0.004

range [kg s ⁻¹] max	$q_p = q_b \max \frac{ q_p }{ q_p }$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccc} 3 kg s^{-1} & 0.3270 \\ 1 kg s^{-1} & 0.32670 \\ 7 kg s^{-1} & 0.1105 \\ 8 kg s^{-1} & 0.0207 \\ 7 kg s^{-1} & 0.0020 \end{array}$

Results: Pressure coupling vs. Bernoulli coupling

$\max \left p_p - p_b \right $	$\max rac{\left p_{p} - p_{b} \right }{p_{p}}$
0.2 bar	0.004

range $[kg s^{-1}]$	$\max \left q_{p} - q_{b} \right $	$\max \frac{ q_p - q_b }{ q_p }$
$10^{-3} < q_p < 10^{-2}$	$0.0003{ m kgs^{-1}}$	0.3270
$10^{-2} < \left q_p \right < 10^{-1}$	$0.0141{ m kgs^{-1}}$	0.32670
$10^{-1} < \left q_{p} ight < 10^{0}$	$0.0177{ m kgs^{-1}}$	0.1105
$10^0 < q_p < 10^1$	$0.0178{ m kgs^{-1}}$	0.0207
$10^1 < q_p $	$0.0447{ m kgs^{-1}}$	0.0029

Rather small effects

Bernoulli coupling implementation

- Bernoulli coupling condition uses the flow velocity $v = \frac{q}{A}$. Therefore we need the pipe diameter A.
- Some connections in GasLib lack all physical properties.
- \Rightarrow need case-by-case coupling conditions.
- Probably the modeling errors are greater than the coupling errors.

Summary

Summary:

- Efficient simulation of large networks over a time span of days
- We have introduced a single framework for the coupling of power and gas.
- Bernoulli coupling possible, yet we saw small benefits.

Future work:

- Finalizing and publishing Grazer
- Uncertain electricity demand and repercussions on the gas net.

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Summary

Summary:

- Efficient simulation of large networks over a time span of days
- We have introduced a single framework for the coupling of power and gas.
- Bernoulli coupling possible, yet we saw small benefits.

Future work:

- Finalizing and publishing Grazer
- Uncertain electricity demand and repercussions on the gas net.

Thank you for your time

Bundesministerium für Bildung und Forschung