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Motivation

=⇒

Challenges of transition to renewable energy are especially

• the storage of energy
• fast reaction to demand peaks

1Power plant: https://pixabay.com/photos/romania-power-plant-electricity-2765289/
2Wind turbine: https://www.pexels.com/photo/agriculture-alternative-energy-clouds-countryside-414837/
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Motivation

• Gas power plants react fast
• Potential for conjunction with

Power-to-Gas plants as long term
energy storage

Gas turbine

3Gas turbine: https://commons.wikimedia.org/wiki/File:GE_H_series_Gas_Turbine.jpg
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Brief model review
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• network is modeled as a directed graph

• edges =̂ different components (pipelines, compressors, . . . )
→ algebraic equations, PDEs

• nodes =̂ junctions
→ boundary conditions - e.g. demand of a load
→ coupling conditions - e.g. Kirchhoff laws, mass conservation)
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Power model
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• AC Powerflow Equations (Parameters Gkj , Bkj):

Pk =
∑

j∈nodes

∣∣Vk

∣∣∣∣Vj

∣∣ [Gkj cos(φk − φj) + Bkj sin(φk − φj)]

Qk =
∑

j∈nodes

∣∣Vk

∣∣∣∣Vj

∣∣ [Gkj sin(φk − φj)− Bkj cos(φk − φj)]

• PQ-/loads, PV-/generators, Vφ/Slack Bus
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Gas model
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• Dynamics in every pipe: isentropic Euler equations
• mass balance: ∂tρ+ ∂xq = 0

• flow balance: ∂tq + ∂x
(
p(ρ) + q2/ρ

)
= −λ(q/ρ)

q|q|
2Dρ

• well-posed4 isothermal pressure law with z-factor: p(ρ) = aρ
1+bρ

4F. et al., Modeling and simulation of sector-coupled networks: A gas-power benchmark, In:
Mathematical MSO for Power Engineering and Management(2021)
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Gas model
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• conservation of mass and equality of pressure as coupling conditions:

ρ1, q1

ρ2, q2

ρ3, q3

G p(ρ1(t)) = p(ρ2(t)) = p(ρ3(t))

q1(t) = q2(t) + q3(t)
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Coupling of gas and power
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• Gas consumption depends linearly on the real power demand P(t):
q(P(t)) = TGtP · P(t)

• Power consumption depends linearly on the gas demand q(t):
P(q(t)) = TPtG · q(t)

• TGtP/TPtG: efficiency of the respective plant
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Bernoulli coupling

ρ1, q1

ρ2, q2

ρ3, q3

G

Pressure coupling:

p(ρ1) = p(ρ2) = p(ρ3)

q1 = q2 + q3

Unphysical: Bernoulli equation demands
lower pressure for faster flow.

Bernoulli coupling5:

HB(ρ, q) =
1
2
v2 +

∫
p′(ρ̂)

ρ̂
dρ̂

Equivalent to Hp, except for 1
2v

2, but
respects Bernoulli equation.

5Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow.,
SIAM J. Appl. Math. 75 (2015), no. 2
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Discretization

• Powerflow problem is solved for every time step.

• Discretization of the isentropic Euler equations yt + f (y)x = g(y)
is done via an implicit box scheme6:

Y n+1
j−1 +Y n+1

j

2 =
Y n
j−1+Y n

j

2 − ∆t
∆x

(
f (Y n+1

j )− f (Y n+1
j−1 )

)
+ ∆t

2

(
g(Y n+1

j−1 ) + g(Y n+1
j )

)
where Y n

j ≈ y is the cell average.

• Scheme is only linear but is not constrained by the CFL condition
⇒ big time steps.

6Bales, Kolb, Lang, An implicit box scheme for subsonic compressible flow with dissipative source term, Numer.
Algorithms 53(2), S.293-307 (2010)
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Software

Grazer will be an open source tool for solving power-grid and gas-network
simulation problems with the following properties:

• Software tests
• full standard compliance (C++17) and compiler support for GCC,

Clang, MSVC.
• free software: GNU Affero General Public License 3.0

Grazer will be released in the summer of 2021.
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Realistically sized gas network

Gaslib-134, approximation of a
greek gas network

Gaslib-1347:
• 86 pipelines
• 3 inflow nodes
• 45 outflow nodes
• Usual pressure range:

20 – 100bar
• pipeline length:

0.5 – 80km

7Schmidt et al., GasLib – A Library of Gas Network Instances, Data 2(4), Art. 40 (2017)

CC-BY-SA, in part from OpenStreetMap
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Benchmark power network

ieee-300 benchmark network

ieee-3008:
• 69 generator nodes
• 231 load nodes
• 411 transmission lines
• order of magnitude of

national high power
networks

Coupling:
• 10 gas-power conversion

plants

8Zimmerman, Murillo-Sánchez, Thomas, MATPOWER: Steady-State Operations, Planning, and Analysis Tools
for Power Systems Research and Education, IEEE Transactions Power Systems (2011)

Created with https://immersive.erc.monash.edu/stac/
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Gas-power conversion

We choose a constant efficiency of 40% for gas power plants:

Pel = TGtP · q

and one of 72% for the power-to-gas conversion9:

q = TPtG · Pel

with TGtP ≈ 16MJ kg−1 and TPtG ≈ 0.017 kgMJ−1. This yields for the
round trip Power Gas Power an efficiency of 28.8%.

9Trimis et al., Potenzial der thermisch integrierten Hochtemperaturelektrolyse und Methanisierung für die
Energiespeicherung durch Power-to-Gas (PtG),gfw Gas 155 (2014) ,no. 1-2
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Simulation

• Simulation time T = 24 h with ∆t = 0.5 h
• ∆x ≤ 10 km
• 10 gas-power conversion nodes
• Power demand: Pdemand = Ps + Pv sin(2π t

24h)

• Power generation in the power grid remains constant
• Surplus demand must be satisfied by gas power plants
• During low demand, excess power is converted to gas
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Results: Gas-power conversion
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Results: Pressure coupling vs. Bernoulli coupling

max
∣∣pp − pb

∣∣ max
|pp−pb|

pp

0.2 bar 0.004

range [kg s−1] max
∣∣qp − qb

∣∣ max
|qp−qb|
|qp|

10−3 <
∣∣qp∣∣ < 10−2 0.0003 kg s−1 0.3270

10−2 <
∣∣qp∣∣ < 10−1 0.0141 kg s−1 0.32670

10−1 <
∣∣qp∣∣ < 100 0.0177 kg s−1 0.1105

100 <
∣∣qp∣∣ < 101 0.0178 kg s−1 0.0207

101 <
∣∣qp∣∣ 0.0447 kg s−1 0.0029

Rather small effects
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Bernoulli coupling implementation

• Bernoulli coupling condition uses the flow velocity v = q
A . Therefore

we need the pipe diameter A.
• Some connections in GasLib lack all physical properties.
• ⇒ need case-by-case coupling conditions.
• Probably the modeling errors are greater than the coupling errors.
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Summary
Summary:

• Efficient simulation of large
networks over a time span of
days

• We have introduced a single
framework for the coupling of
power and gas.

• Bernoulli coupling possible, yet
we saw small benefits.

Future work:
• Finalizing and publishing Grazer
• Uncertain electricity demand and

repercussions on the gas net.

Thank you for your time
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