
Existence of Equilibria in Energy Markets with Convex and
Nonconvex Players

J. Grübel, O. Huber, L. Hümbs, M. Klimm, M. Schmidt, A. Schwartz
Trends in Mathematical Modelling, Simulation and Optimisation: Theory and Applications
Online, 03-02-2021



Motivation



Fundamental Welfare Theorems

Fundamental theorems of welfare economics (Arrow, Debreu, Walras)
Under suitably chosen assumptions (esp. convexity), competitive equilibria
exist, are unique, and Pareto-optimal, i.e., there exists a 1-1 correspondence of
market equilibria and welfare optima.

quantity

price

demand

supply

π

q

03-02-2021 | J. Grübel | Existence of Equilibria in Energy Markets with Convex and Nonconvex Players 3



Fundamental Welfare Theorems

Fundamental theorems of welfare economics (Arrow, Debreu, Walras)
Under suitably chosen assumptions (esp. convexity), competitive equilibria
exist, are unique, and Pareto-optimal, i.e., there exists a 1-1 correspondence of
market equilibria and welfare optima.

quantity

price

demand

supply

π

q from https: // gaslib. zib. de/ data. html

03-02-2021 | J. Grübel | Existence of Equilibria in Energy Markets with Convex and Nonconvex Players 3

https://gaslib.zib.de/data.html


Central Research Questions

Central research questions
Given an energy market game with nonconvexities.
1. Can we decide existence of a competitive market equilibrium?
2. How often exist equilibria for respective applications?
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The Market Equilibrium Problem



Simultaneous Competitive Market Game (MEP)

All players i ∈ I . . .
. . . are price-takers
. . . have perfect information
. . . solve the optimization problem

min
yi

fi(yi, π) := ci(yi) + πT hi(yi) s.t. yi ∈ Yi

In addition, their best-responses satisfy the market clearing conditions∑
i∈I

hi(yi) = 0

π Price vector
fi Objective function of the player

yi , Yi Decision variables, feasible set of the player
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The Corresponding Welfare Optimization Problem (WFP)

min
y

∑
i∈I

ci(yi) s.t. y ∈ Y ,
∑
i∈I

hi(yi) = 0

y Decision variables of all players
Y Cartesian product of individual feasible sets

03-02-2021 | J. Grübel | Existence of Equilibria in Energy Markets with Convex and Nonconvex Players 7



Existence of Equilibria



Lagrangian Dual Problem of the (WFP)

min
y

∑
i∈I

ci(yi) s.t. y ∈ Y ,
∑
i∈I

hi(yi) = 0 (WFP)

sup
π

d(π) := inf
y∈Y

L(y , π) =
∑
i∈I

(
ci(yi) + πT hi(yi)

)
(LD-WFP)

Theorem (See Part 1. of Theorem 2.3 in Harks (2020))
The pair (y∗, π∗) is a market equilibrium of (MEP) if and only if y∗ and π∗ are
solutions of the welfare optimization problem (WFP) and the corresponding
dual problem (WFP-LD), respectively, with zero duality gap.
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Implications

Corollary
(a) If (y∗, π∗) is an equilibrium of (MEP), then y∗ is a global solution of (WFP).
(b) If y∗ is a global solution of (WFP), for which there exists no π such that

(y∗, π) is an equilibrium of (MEP), then (MEP) has no solution.
(c) If (y∗, π∗) and (ŷ , π̂) are equilibria of (MEP), then so are (y∗, π̂) and (ŷ , π∗).
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Players with Unique Best-responses

Corollary
Let S ⊆ I be those players with unique best responses for all price vectors.
(a) If (y∗, π∗) and (ŷ , π̂) are equilibria of (MEP), then y∗S = ŷS.
(b) If y∗ and ŷ are global solutions of (WFP) with y∗S 6= ŷS, then (MEP) does not

have a solution.
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Example: Non-existence due to Strictly Convex Players
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Equilibrium Price Candidate Set Π(y∗) ⊆ Rnπ

(y∗, π∗) is a market equilibrium of (MEP) =⇒ π∗ ∈ Π(y∗)

Goal: Reduce candidate set to critical price vector π̂!

π−k := inf
π∈Π(y∗)

πk and π+
k := sup

π∈Π(y∗)
πk for all k ∈ {1, . . . , nπ}
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Identification of Critical Price Vector
Theorem
Let y∗ be a solution of the (WFP) and let Π(y∗) 6= ∅ be given. Assume that for
all k ∈ {1, . . . , nπ} at least one of the following properties is satisfied:
(a) π−k = π+

k ,
(b) π+

k <∞ and (hi(y∗i ))k ≤ (hi(yi))k for all yi ∈ Yi and all i ∈ I,
(c) π−k > −∞ and (hi(y∗i ))k ≥ (hi(yi))k for all yi ∈ Yi and all i ∈ I,
(d) π−k = −∞, π+

k =∞ and (hi(y∗i ))k = (hi(yi))k for all yi ∈ Yi and all i ∈ I.
Then there exists an equilibrium of (MEP) if and only if (y∗, π̂) is an equilibrium,
where π̂ is defined as

π̂k :=


π−k = π+

k , if (a) applies,

π+
k , if (b) applies,

π−k , if (c) applies,

0, if (d) applies.
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Energy Market Applications and Numerical Results



Application “Nonlinear Stationary Gas Flow”

fTSO(q) =
∑

u∈V−∪V+

πu

 ∑
a∈δ−(u)

qa −
∑

a∈δ+(u)

qa

−∑
a∈A

αqaqa

pv pw
q

p2
v − p2

w = Λ |q| q,
p−v ≤ pv ≤ p+

v , p−w ≤ pw ≤ p+
w

Λ Computed from gas and pipe parameters
q Gas flow
p Gas pressure
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Test Instances for Application “Gas Physics”

• “GasLib - A Library of Gas Network Instances” from Schmidt et al. (2017)
• “Global Optimization for the Multilevel European Gas Market System with

Nonlinear Flow Models on Trees” from Schewe et al. (2021)

Instance |V | |V−| |V+| |A| #scenarios α

GasLib-11 D5 11 3 3 10 12 {0.01, 0.05, 0.1}
GasLib-11 11 3 3 11 20 {0.01, 0.05, 0.1}
GasLib-24 22 4 3 23 20 {0.01, 0.05, 0.1}
GasLib-134 123 41 3 122 20 {0.01, 0.05, 0.1}
GasLib-134 TC 134 45 3 133 20 {0.01, 0.05, 0.1}
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Numerical Results for Application “Gas Physics”

# instances 276
# instances solved within time limit 243

# instances with market equilibrium 243
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Application “DC Line Switching”

fTSO(q, x) =
∑

u∈V−∪V+

πu

 ∑
a∈δ−(u)

qa −
∑

a∈δ+(u)

qa

−∑
a∈A

αqaqa −
∑
a∈As

β(1− xa)

θv θw
q

θv θw
q
x

θv − θw = −1
B

q

q− ≤ q ≤ q+

(
θv − θw +

1
B

q
)

(1−x) = 0, qx = 0

q− ≤ q ≤ q+

B Computed from pipe parameters
q, θ Electricity flow, phase angle

x Switching variable (0 on, 1 off)
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Test Instances for Application “DC Line Switching”

• “MATPOWER (Version 7.1)” from Zimmerman and Murillo-Sanchez (2020)
• 10% of all arcs are randomly selected as being switchable
• 42 scenarios in total
• Transport costs α ∈ {0.1, 0.5, 1.0}
• Switching costs β ∈ {20, 50}

Instance |V | |V−| |V+| |A|
Smallest 5 3 4 6
Average 2362 1246 405 3304
Biggest 13659 5043 4092 20467
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Numerical Results for Application “DC Line Switching”

# instances 252
# instances solved within time limit 211

# instances with market equilibrium 121

Observations
It becomes more likely that an equilibrium exists with . . .

• . . . decreasing number of nodes
• . . . increasing transport costs
• . . . increasing switching costs
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Example: Switched-off vs. Switched-on Consumers

Welfare solution:

w

...

v πv = 40.57

u πu = 40.81

Best-response of TSO:

w

...

v πv = 40.57

u πu = 40.81
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Conclusion



Summary

Answers to the central research questions
Given an energy market game with nonconvexities.
1. Can we decide existence of a competitive market equilibrium?

•
•

•

2. How often exist equilibria for respective applications?
•
•
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• Uniqueness / non-existence result for MEPs that include strictly convex players
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Summary

Answers to the central research questions
Given an energy market game with nonconvexities.
1. Can we decide existence of a competitive market equilibrium?

• Uniqueness / non-existence result for MEPs that include strictly convex players
• Identification of critical price vector for specific types of MEPs occuring, e.g., in

transportation networks
• Algorithmic approach that decides existence of equilibrium and computes an

equilibrium in case of existence
2. How often exist equilibria for respective applications?

• Gas physics: Always
• DC line switching: About 50% of cases
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Thank you for your attention!

Questions + Answers
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