

Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks

Existence of Equilibria in Energy Markets with Convex and Nonconvex Players

<u>J. Grübel</u>, O. Huber, L. Hümbs, M. Klimm, M. Schmidt, A. Schwartz Trends in Mathematical Modelling, Simulation and Optimisation: Theory and Applications Online, 03-02-2021

Open-Minded

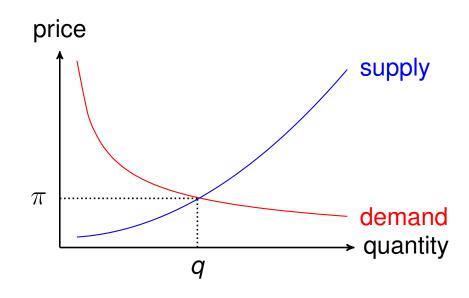
berlin

Motivation

Fundamental Welfare Theorems

Fundamental theorems of welfare economics (Arrow, Debreu, Walras)

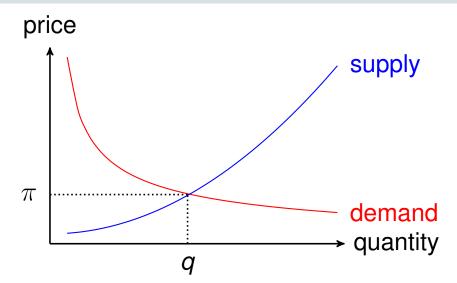
Under suitably chosen assumptions (esp. convexity), competitive equilibria exist, are unique, and Pareto-optimal, i.e., there exists a 1-1 correspondence of market equilibria and welfare optima.



Fundamental Welfare Theorems

Fundamental theorems of welfare economics (Arrow, Debreu, Walras)

Under suitably chosen assumptions (esp. convexity), competitive equilibria exist, are unique, and Pareto-optimal, i.e., there exists a 1-1 correspondence of market equilibria and welfare optima.



from https://gaslib.zib.de/data.html

Central Research Questions

Central research questions

Given an energy market game with **nonconvexities**.

- 1. Can we decide existence of a competitive market equilibrium?
- 2. How often exist equilibria for respective applications?

The Market Equilibrium Problem

Simultaneous Competitive Market Game (MEP)

All players $i \in I \dots$

- ... are price-takers
- ... have perfect information
- ... solve the optimization problem

$$\min_{y_i} f_i(y_i, \pi) := c_i(y_i) + \pi^T h_i(y_i) \quad \text{s.t.} \quad y_i \in Y_i$$

In addition, their best-responses satisfy the market clearing conditions

$$\sum_{i\in I}h_i(y_i)=0$$

- π Price vector
- *f_i* Objective function of the player
- y_i , Y_i Decision variables, feasible set of the player

The Corresponding Welfare Optimization Problem (WFP)

$$\min_{y} \quad \sum_{i \in I} c_i(y_i) \quad \text{s.t.} \quad y \in Y, \quad \sum_{i \in I} h_i(y_i) = 0$$

- y Decision variables of all players
- Y Cartesian product of individual feasible sets

Existence of Equilibria

Lagrangian Dual Problem of the (WFP)

$$\min_{y} \sum_{i \in I} c_i(y_i) \quad \text{s.t.} \quad y \in Y, \quad \sum_{i \in I} h_i(y_i) = 0 \quad (WFP)$$

$$\sup_{\pi} d(\pi) := \inf_{y \in Y} L(y, \pi) = \sum_{i \in I} \left(c_i(y_i) + \pi^T h_i(y_i) \right) \quad (\mathsf{LD-WFP})$$

Theorem (See Part 1. of Theorem 2.3 in Harks (2020))

The pair (y^*, π^*) is a market equilibrium of (MEP) if and only if y^* and π^* are solutions of the welfare optimization problem (WFP) and the corresponding dual problem (WFP-LD), respectively, with zero duality gap.

Implications

Corollary

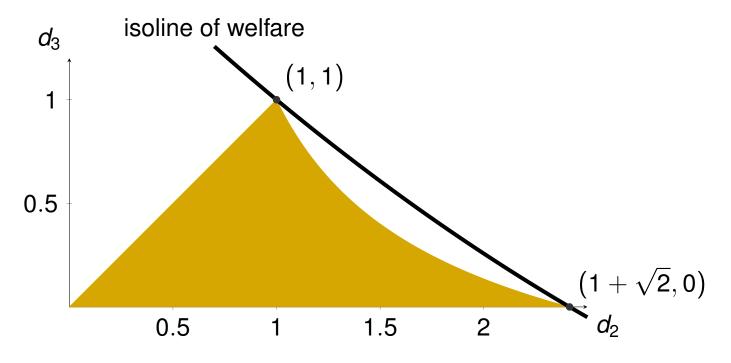
(a) If (y*, π*) is an equilibrium of (MEP), then y* is a global solution of (WFP).
(b) If y* is a global solution of (WFP), for which there exists no π such that (y*, π) is an equilibrium of (MEP), then (MEP) has no solution.
(c) If (y*, π*) and (ŷ, π̂) are equilibria of (MEP), then so are (y*, π̂) and (ŷ, π*).

Players with Unique Best-responses

Corollary

Let S ⊆ I be those players with unique best responses for all price vectors.
(a) If (y*, π*) and (ŷ, π̂) are equilibria of (MEP), then y_S* = ŷ_S.
(b) If y* and ŷ are global solutions of (WFP) with y_S* ≠ ŷ_S, then (MEP) does not have a solution.

Example: Non-existence due to Strictly Convex Players



from Grimm et al. (2019)

Equilibrium Price Candidate Set $\Pi(y^*) \subseteq \mathbb{R}^{n_{\pi}}$

$$(y^*, \pi^*)$$
 is a market equilibrium of (MEP) $\implies \pi^* \in \Pi(y^*)$

<u>Goal</u>: Reduce candidate set to critical price vector $\hat{\pi}$!

$$\pi_k^- := \inf_{\pi \in \Pi(y^*)} \pi_k$$
 and $\pi_k^+ := \sup_{\pi \in \Pi(y^*)} \pi_k$ for all $k \in \{1, \dots, n_\pi\}$

Identification of Critical Price Vector

Theorem

Let y^* be a solution of the (WFP) and let $\Pi(y^*) \neq \emptyset$ be given. Assume that for all $k \in \{1, ..., n_\pi\}$ at least one of the following properties is satisfied: (a) $\pi_k^- = \pi_k^+$, (b) $\pi_k^+ < \infty$ and $(h_i(y_i^*))_k \leq (h_i(y_i))_k$ for all $y_i \in Y_i$ and all $i \in I$, (c) $\pi_k^- > -\infty$ and $(h_i(y_i^*))_k \geq (h_i(y_i))_k$ for all $y_i \in Y_i$ and all $i \in I$, (d) $\pi_k^- = -\infty, \pi_k^+ = \infty$ and $(h_i(y_i^*))_k = (h_i(y_i))_k$ for all $y_i \in Y_i$ and all $i \in I$. Then there exists an equilibrium of (MEP) if and only if $(y^*, \hat{\pi})$ is an equilibrium, where $\hat{\pi}$ is defined as

$$\pi_k := \begin{cases} \pi_k^- = \pi_k^+, & \text{if (a) applies,} \\ \pi_k^+, & \text{if (b) applies,} \\ \pi_k^-, & \text{if (c) applies,} \\ 0, & \text{if (d) applies.} \end{cases}$$

 $\hat{\pi}$

Energy Market Applications and Numerical Results

Application "Nonlinear Stationary Gas Flow"

$$f_{\text{TSO}}(q) = \sum_{u \in V_- \cup V_+} \pi_u \left(\sum_{a \in \delta^-(u)} q_a - \sum_{a \in \delta^+(u)} q_a \right) - \sum_{a \in A} \alpha q_a q_a$$
$$(p_v) - (p_w)$$
$$p_v^2 - p_w^2 = \Lambda |q| q,$$
$$p_v^- \leq p_v \leq p_v^+, \quad p_w^- \leq p_w \leq p_w^+$$

- Λ Computed from gas and pipe parameters
- *q* Gas flow
- *p* Gas pressure

Test Instances for Application "Gas Physics"

- "GasLib A Library of Gas Network Instances" from Schmidt et al. (2017)
- "Global Optimization for the Multilevel European Gas Market System with Nonlinear Flow Models on Trees" from Schewe et al. (2021)

Instance	V	<i>V</i> _	$ V_+ $	A	#scenarios	α
GasLib-11 D5	11	3	3	10	12	{0.01, 0.05, 0.1}
GasLib-11	11	3	3	11	20	{0.01, 0.05, 0.1}
GasLib-24	22	4	3	23	20	{0.01, 0.05, 0.1}
GasLib-134	123	41	3	122	20	{0.01, 0.05, 0.1}
GasLib-134 TC	134	45	3	133	20	$\{0.01, 0.05, 0.1\}$

Numerical Results for Application "Gas Physics"

# instances	276
# instances solved within time limit	243
# instances with market equilibrium	243

Application "DC Line Switching"

$$f_{\text{TSO}}(q, x) = \sum_{u \in V_{-} \cup V_{+}} \pi_{u} \left(\sum_{a \in \delta^{-}(u)} q_{a} - \sum_{a \in \delta^{+}(u)} q_{a} \right) - \sum_{a \in A} \alpha q_{a} q_{a} - \sum_{a \in A_{s}} \beta(1 - x_{a})$$

$$(\theta_{v}) - q_{w} = -\frac{1}{B}q_{v} \qquad (\theta_{v}) - \frac{q_{w}}{X} - \theta_{w} = 0$$

$$q^{-} \leq q \leq q^{+} \qquad (\theta_{v} - \theta_{w} + \frac{1}{B}q)(1 - x) = 0, \quad qx = 0$$

- *B* Computed from pipe parameters
- q, θ Electricity flow, phase angle
 - *x* Switching variable (0 on, 1 off)

Test Instances for Application "DC Line Switching"

- "MATPOWER (Version 7.1)" from Zimmerman and Murillo-Sanchez (2020)
- 10% of all arcs are randomly selected as being switchable
- 42 scenarios in total
- Transport costs $\alpha \in \{0.1, 0.5, 1.0\}$
- Switching costs $\beta \in \{20, 50\}$

Instance	V	<i>V</i> _	$ V_+ $	A
Smallest	5	3	4	6
Average	2362	1246	405	3304
Biggest	13659	5043	4092	20467

Numerical Results for Application "DC Line Switching"

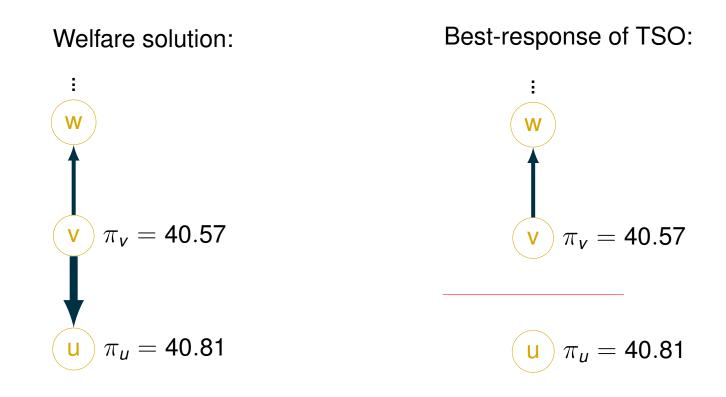
# instances	252
# instances solved within time limit	211
# instances with market equilibrium	121

Observations

It becomes more likely that an equilibrium exists with ...

- ... decreasing number of nodes
- ... increasing transport costs
- ... increasing switching costs

Example: Switched-off vs. Switched-on Consumers



Conclusion

Summary

Answers to the central research questions

Given an energy market game with nonconvexities.

1. Can we decide existence of a competitive market equilibrium?

- •
- •
- •
- 2. How often exist equilibria for respective applications?
 - •
 - •

Summary

Answers to the central research questions

Given an energy market game with nonconvexities.

- 1. Can we decide existence of a competitive market equilibrium?
 - Uniqueness / non-existence result for MEPs that include strictly convex players
 - Identification of critical price vector for specific types of MEPs occuring, e.g., in transportation networks
 - Algorithmic approach that decides existence of equilibrium and computes an equilibrium in case of existence
- 2. How often exist equilibria for respective applications?
 - •
 - •

Summary

Answers to the central research questions

Given an energy market game with nonconvexities.

1. Can we decide existence of a competitive market equilibrium?

- Uniqueness / non-existence result for MEPs that include strictly convex players
- Identification of critical price vector for specific types of MEPs occuring, e.g., in transportation networks
- Algorithmic approach that decides existence of equilibrium and computes an equilibrium in case of existence
- 2. How often exist equilibria for respective applications?
 - · Gas physics: Always
 - DC line switching: About 50% of cases

Thank you for your attention!

Questions + Answers