THE BRAVE NEW WORLD OF EXASCALE COMPUTING: COMPUTATION IS FREE, DATA MOVEMENT IS NOT

Utz-Uwe Haus, Head of HPE HPC/AI EMEA Research Lab

2021-03-03

TRR154/MINOA conference “Trends in Modelling, Simulation and Optimisation: Theory and Applications”

Supported by the European Union’s Horizon 2020 research and innovation program through grant agreement 801101.
Deep Technical Collaboration
- HPE & Customers work together
- Focus on new technologies
- Drive future HPE products
- Long term technical relationship

Research Interests
- Memory hierarchy
- Data Movement and Workflows
- Novel accelerators, highly heterogenous systems
- Compilers and mathematical optimisation
- HPC in Cloud, AI and Big Data
- System and site monitoring and data analysis

Engagement Models
- Advanced Collaboration Centers in Centers of Excellence
- Value Add projects
- EU H2020 research projects
ADVANCED COLLABORATION CENTERS IN EMEA

ARCHER/ARCHER2, UK
- LASSi - IO Monitoring and Analytics
- Application tuning (XC30/EX)
- IO Performance Optimisation

KAUST, KSA
- Numerical linear algebra libraries
- Asynchronous tasking
- Deep Learning for Bio-Science

GW4
- ARM system tuning
- ARM ecosystem development
- Joint ARM, Cavium partnership

Coming up: LUMI and HLRS
CURRENT H2020 PROJECTS

- **EXPERTISE**
- **MAESTRO**
- **EPIGRAM-HS**
- **SODALITE**
- **Plan4Res**
- **Funded PhD secondments**
WHAT IS A SUPERCOMPUTER?

Any of a class of extremely powerful computers. The term is commonly applied to the fastest high-performance systems available at any given time.

-A supercomputer is a computer with a high level of performance as compared to a general-purpose computer.

-A supercomputer is scientific instrument.

-A supercomputer is a device for turning compute-bound problems into I/O-bound problems.

-Britannica

-HPE

-nimbix

-Wikipedia

-folklore

-Ken Batcher
Exascale computing: 10^{18} Floating Point Operations per second (FLOPS)

- Measured by LINPACK:
 - solve $Ax = b$ for dense A
 - using LU factorization with partial pivoting
 - with $\frac{2}{3}n^3 + O(n^2)$ operations
 - In double-precision IEEE floating point

- Theoretical peak performance R^{peak}
 - ignoring communication between compute units

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raspberry Pi-4B</td>
<td>13.5 GF</td>
</tr>
<tr>
<td>iPhone 11 A13</td>
<td>0.8 TF</td>
</tr>
<tr>
<td>Nvidia Titan V</td>
<td>110 TF</td>
</tr>
</tbody>
</table>

https://www.top500.org/
MAJOR LEAPS IN PERFORMANCE: 3 ERAS OF SUPERCOMPUTING

Performance of top supercomputers breaking FLOPS barriers

- 1 ExaFLOPS
- 1 PetaFLOPS
- 1 TeraFLOPS

Timeline:
- 1990
- 2000
- 2010
- 2020
- 2030

Supercomputers:
- ASCI White
- Jaguar
- Titan
- Summit
- Frontier
- El Capitan

Eras:
- CPU-ONLY Terascale
- GPU-Accelerated Petascale
- GPU-Accelerated Exascale
INGREDIENTS IN A CRISIS CURRENTLY HAPPENING

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
MEMORY V.S. COMPUTATION: THEN AND NOW

<table>
<thead>
<tr>
<th></th>
<th>Cray 1, 1975</th>
<th>Fugaku, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Performance</td>
<td>160 MFLOPS</td>
<td>537 PFLOPS</td>
</tr>
<tr>
<td>Perf/node</td>
<td>160 MFLOPS</td>
<td>3.38 TFLOPS</td>
</tr>
<tr>
<td>Memory capacity /node</td>
<td>8 MB</td>
<td>32 GB</td>
</tr>
<tr>
<td>Memory bandwidth /node</td>
<td>640 MB/s</td>
<td>1024 GB/s</td>
</tr>
<tr>
<td>Memory bandwidth / flop</td>
<td>4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- Cray 1, 1975
- Fugaku, 2020
Moore’s Law: The number of transistors on microchips doubles every two years.

Moore’s law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

“The number of transistors in a dense integrated circuit (IC) doubles about every two years.
"As transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) with length."

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
Energy cost, in picojoules (pJ) per 64-bit floating-point operation.

Note that the double-precision floating-point arithmetic (DP FP Op) energy cost is comparable to that for moving the same data 1mm–5mm on chip.

That cost is dwarfed by the cost of any movement of this same data off chip.
MEMORY IS DIVERSE

- Caches L1, L2, L3
- DRAM
- GDRAM
- NUMA domains
- HBM/MCDRAM
- NVDIMM
- Node-local SSD
- ...
- Object Storage
- GFS

Intel Xeon Gold 6230 Cascade Lake architecture

- 2 packages
 - 2 NUMA nodes
 - 10 cores
 - 2 threads
 - 2 NVDIMM managed with kmem DAX driver
DATA MOVEMENT IS HARD AND A MAJOR PERFORMANCE BOTTLENECK

Is it still a hierarchy?

- Latency, bandwidth, capacity numbers not monotone anymore
- Some have separate address spaces
- Some not under our control

It’s a dynamic (robust) vehicle routing problem with inventories and splittable resources. Contains

- Splittable flow
- Packing
- Job shop scheduling

➤ Mathematically hard; hard to approximate

➤ Practically hard:

- No uniform programming model
- No system model to compute optimal schedules at scale
INGREDIENTS FOR A SOLUTION

Move computations, not data
Decouple instructions (code) and data movement
Beware of von Neumann architecture bottleneck, in particular the word-by-word traffic paradigm

Count energy, not instructions
Remember when + and * were counted with different costs multipliers in CS101?

Our complexity classes don’t capture instruction sets well where computation and data movement have exponentially different cost.

Communication-avoiding algorithms are a niche topic.

Recompute instead of reload
Overlapping data movement and compute is no longer sufficient.

Ghosting, cache-oblivious or write-avoiding algorithms, architecture/topology-aware implementations are limited (and not future-proof)

Functional programming is the right abstraction: well-defined side-effect-free/closure-confined computations.

Wikimedia, CC BY-SA 3.0
At workflow level, explicit
 • Rise of heterogeneous coupled applications
 – Analytics, Systems Biology, Live “Big Data” processing

In HPC
 • Parallel File System as backbone of implicit workflows
 – Simulation-analysis coupling, checkpointing, archiving
 – Coupler frameworks/middlewares

In Programming Environment
 • Distributed tasking: HPX, PaRSEC, Legion, swift-lang, (StarPU), ...
 • On-node tasking: OMP tasking, StarPU; pthreads, ArgoBots, UPC
 – Often lacking data locality information and data movement cost metrics
 • Functional paradigms entering mainstream languages (C++xx)
 • IO abstractions: Dataspaces, H5FDDSM, ADIOS2

In Hardware abstraction
 • Dataflow architectures
Decompose program into tasks that are coupled by input-output relations
- A directed graph, tasks as nodes, data as arc labels, δ^+, δ^- as outputs/inputs
- Program execution:
 - Marking of initial tasks as ‘ready to run’
 - Executing (some) ‘ready-to-run’ tasks
 - Marking successors of completed tasks as ‘ready-to-run’
- Acyclic in purely functional programming, cyclic with bounded number of cycle repeats for terminating non-pure programs

Example: $b = Ax$ decomposes into $2 + m$ tasks:
- T_0: Scatter rows of A
- $T_1 \ldots T_m$: m scalar product tasks $A_i.x$
- T_{m+1}: gather results into b
WHY?

Figure 2. Assessing the performance of various incremental optimizations.

Running additionally in asynchronous mode (Async) further reduces time to solution (up to 2x), especially for medium range of matrix sizes, where processing units run out of work and can be overlapped by computations, thanks to the asynchronous mode still providing additional performance.

Figure 3. Assessing synchronous Vs asynchronous execution traces of task-based QDWH implementation. The scalability graphs, the performance curves of the task-based QDWH based QDWH on the KNL system with a matrix size of 10^K. Since the matrix is ill-conditioned, the task-based QDWH performs six iterations because the Cholesky panel factorization involves three Cholesky-based iterations is not as severe as QR-based three iterations.

Figure 4 demonstrates the performance scalability of the tile-based Tile kernel API, after each panel/update computation, so that we can better capture the performance gain against coarse-grained computations engendered by block algorithms, as described in Section V. These traces have been obtained on the KNL system for a matrix size of 10^K. Since the matrix is ill-conditioned, the task-based QDWH performs six iterations, so that we can better capture the performance gain against coarse-grained computations engaged by block algorithms, as described in Section V. These traces have been obtained on the KNL system for a matrix size of 10^K. Since the matrix is ill-conditioned, the task-based QDWH performs six iterations because the Cholesky panel factorization involves three Cholesky-based iterations is not as severe as QR-based three iterations.
SCHEDULING?
It’s a kind of VRP, but then again not

Vehicle routing model
Route code along data
- Data immutable
 - Explicit duplication operations allowed
- Hypergraph in bipartite representation
 - "substances" (data objects)
 - "reactions" (functional transformations)
 - A subset of transformations: data movement
- Transformation cost function
 (energy, time, ...)
 - Looks a lot like a Petri net

Job shop Scheduling:
Assign tuples of data and code to compute resources
- Ordering constraints
- Machine-dependent execution times
- Data handling implicit in
 - Machine-dependent setup times
 - Sequence-dependent setup times
 - Reconfigurable machines: Data hierarchy access

Packing:
Handling multiple concurrent workflows
- Inside one problem instance
 - ‘Machines’ have setup times, amortized cost
 - Competition for resources
- Across workflows
 - Non-cooperating users
 - Different/contradicting objectives (makespan, energy, ...)
- In time, on resources, partially splittable
- Often online
WHERE’S THE INSTANCE DATA?

System Monitoring
- Too coarse or too fine grained
- Based on hardware/software parameters that often are not suitable for a-priory models
- Often cannot be attributed to tasks
- Congestion vs. nominal data

Feedback profiling
- Not automatic
- Post-mortem
- Resulting models not sufficiently data-dependent

Machine models
- Nominal behavior/stochastic data
- Usable only at compiler or HPC workload manager level
- Very complex for modern large systems

Building a middleware (dataplane) that operates at application-defined object level permits
- data location awareness
- measuring at object level
- Compiler/application/workflow level optimal scheduling

https://www.maestro-data.eu/
OUTLOOK

- HPC is a great target for operations research techniques
 - Hardware and software system
 - Interconnects
 - Programming level

- Computational models disrupted
 - Data centricity
 - Heterogeneity up to the ‘Cloud-to-Edge’ level

- Many well-contained optimization problems and some extremely general ones

- After Exascale there’ll be Zetascale, so there is no shortage of scalable problem instances

... and I’ve not even talked about using mathematical programming on HPC systems
THANK YOU

uhaus@hpe.com

Note:
Please update the background image in the Thank You slide to match your image for the title slide, using the same process outlined in Slide 1 of this template.

Tip!
Remember to remove this text box.