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PORT-HAMILTONIAN MODELING
@ Energy-based paradigm.

@ Stability and passivity properties.

o Consistent interconnection of diverse physical domains.

@ Structure-preserving numerics.

PH MODEL HIERARCHY FOR GAS PIPES )

CONSISTENT NETWORK INTERCONNECTION J
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PORT-HAMILTONIAN MODELING )

PH MODEL HIERARCHY FOR GAS PIPES
@ Partially-ordered (by accuracy) set of models.

@ Very accurate models are complex.
@ Choice of model should be application-dependent.

@ Dynamical change of models if error is small.

CONSISTENT NETWORK INTERCONNECTION J
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PORT-HAMILTONIAN MODELING )

PH MODEL HIERARCHY FOR GAS PIPES )

CONSISTENT NETWORK INTERCONNECTION
@ Components are modeled individually.

@ Energy-preserving interconnection.

@ Exploiting PH structure and Kirchhoff's laws.
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Port-Hamiltonian descriptor systems
Port-Hamiltonian descriptor system

A port-Hamiltonian descriptor system (PHDAE) is

Ez = (J — R)e(z) + Bu,

PHDAE
y = Ce(z), ( )
together with a Hamiltonian 7 (z), with state z € R", input and
output u,y € R™, effort function e : R — R! and matrix
coefficients E € Rb™, J, R € Rb, B € Rb™, C € R™, such that

o J=—J" R=R">0,and C =BT,
o VH(z) = ETe(z). J
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Port-Hamiltonian descriptor systems
Port-Hamiltonian descriptor system

A port-Hamiltonian descriptor system (PHDAE) is

Ez = (J — R)e(z) + Bu,

y = Ce(2), (PHDAE)

with Hamiltonian % (z), where J = —JI,R=R" >0, C=RBT.

Power balance equation and dissipation inequality:

%}[(z(f)) =——eRe+y'u<y'u (PBE/DI)

= stability and passivity properties (given e.g. H > 0).

R. Morandin (morandin@math.tu-berlin.de) A hierarchy of port-Hamiltonian models for gas networks



Port-Hamiltonian descriptor systems
Port-Hamiltonian descriptor system

A port-Hamiltonian descriptor system (PHDAE) is

Ez = (J — R)e(z) + Bu,

y = Ce(2), (PHDAE)

with Hamiltonian % (z), where J = —JI,R=R" >0, C=RBT.

Extensions:
@ State and time dependent coefficients.

@ Addition of feedthrough terms.

@ Generalization to PDEs.
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1-D Euler equations for gas pipes (TA1)

p density h height
v velocity m = pv momentum —_—
D v int. energy H = %pv2 + pgh + v tot. energy
P pressure AT temperature difference
=0 zel=|0,L] x=1L
1-D Euler equations for gas pipes
dp Om
Mass — 4+ — =0,
ot  Ox '
om 0 Oh
Momentum —— + —(mv = —Avlm — pg—, TAl
50 T gg (MY +P) [olm —pgo—,  (TA1)
0H 0
Ener — + —((H +p)v) = EAT.
gy 50 + gz (H +p)v)

together with equation of state p = p(p,v).

A hierarchy of port-Hamiltonian models for gas networks
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Energy conservation

o Total energy of the system: H = LL Hdzx.

@ The third equation gives a PBE:

L
%}[ = —[v(H +p)]y +k/ AT dx J
0

where [F] = F(L) — F(0).
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Energy conservation

o Total energy of the system: H = LL Hdzx.

@ The third equation gives a PBE:

L
%}[ = —[v(H +p)]y +k/ AT dx J
0

where [F] = F(L) — F(0).

@ Energy enters the system in two ways:
o boundary of the pipe (z € {0, L}),
o temperature difference with the pipe wall.

@ Friction — internal energy: no dissipation.
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1-D Euler equations as a pHDAE

@ Define state vector z = (p, v, V).

L - +gh
0OH 2
e Hamiltonian #(z / H(z)dz = —(2) = pv |-
0z 1

@ Rewrite the equations as:

E(2)z = J(2)e(z) + By AT,
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1-D Euler equations as a pHDAE

@ Define state vector z = (p, v, V).

L - +gh
0OH 2
e Hamiltonian #(z / H(z)dz = —(2) = pv |-

0z 1
@ Take a closer look to E(z) and e(z):
E(z) e(z)
—_—~— ——

In some sense, we have K = ETe.
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1-D Euler equations as a pHDAE

@ Define state vector z = (p, v, V).

2+ gh
OH 2
e Hamiltonian #(z / H(z)dz = —(2) = pU
0z 1
@ Add coupled output equation:
Br
0
E(z)Z=J(2)e(z) + |0|AT,
k
yr= [0 0 kle(z)=k

In some sense, we have Cp = B;.
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1-D Euler equations as a pHDAE

@ Define state vector z = (p, v, V).

L v +gh
0OH 2
e Hamiltonian #(z / H(z)dz = —(2) = [ pU ]
0z 1

@ Take a closer look to J(z):

— & (p)
J(z) = _P% J23<Z)

J32(2)
with
Jas(2) = Va% - %( ) = Alvfv,
Jin(2) = — 2 () — p + Aol
Do we have J = —J'? (and in which sense?)
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1-D Euler equations as a pHDAE

@ In finite dimension, J = —J" iff e Je = 0 for all e. Do we

have something similar here?

L

o Consider the bilinear product (e, f) := [ e(x)" f(x) dz. Then

0

(e, J(2)e) = —[(pey + (v +p)eg)esly, Ve = H .
€3

e For e = e(z), thisis —[(H +p)v]§.
@ If e has vanishing boundary, then (e, Je) = 0.
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1-D Euler equations as a pHDAE

@ In finite dimension, J = —J" iff e Je = 0 for all e. Do we

have something similar here?

L

o Consider the bilinear product (e, f) := [ e(x)" f(x) dz. Then

0
(e, J(2)e) = —[(pey + (v +p)eg)esly, Ve = H .
€3

e For e = e(z), thisis —[(H +p)v]§.
@ If e has vanishing boundary, then (e, Je) = 0.
e In general, (e, J(2)e) = (U(z)e) 'Y (2)e, where

v+p
Peslso ] er + = Peslu—g

U(z)e = v , Y(z)e= P
® |:_pe2‘a:—L =) [@1 + el

are input and output boundary operators.
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1-D Euler equations as a pHDAE

@ Add boundary control and boundary output equations:
H+p|
P x=0

p=U(2)e(z) = [ i } . B=Y(2)elz) = [H,L] .

@ The input p is the inward momentum, the output f is the
Bernoulli invariant.
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1-D Euler equations as a pHDAE

@ Add boundary control and boundary output equations:

H+p| 0
X

p=U(2)e(z) = [ i } , B=Y(2)e(2) = [H:;,J,;L] :

@ The input p is the inward momentum, the output f is the
Bernoulli invariant.

@ We have then the descriptor system
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1-D Euler equations as a pHDAE

Bilinear products

(e, (f,w)y(z) = (& f) +u"Y(2)e,
(7, o = (yr AT) + B .

Properties

2) C=B"T (e, Bli)y(,) = (Ce, i) for all z, e, i;
(3) 0F =ETe : (0H(z),w) = (e(2), E(z)w)yy, for all z,w.
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1-D Euler equations as a pHDAE

Properties

(1) J==JT : (e j<2)6>y<z) =0 for all z,¢;
2) C =BT : (e, B = ée,ﬂ for all z, e, u;
Y(z) 10
3) H =ETe : (§H(2),w) = {e(z), E(2)w)y, for all z,w.
(2)

(3) . DAE, = =
= (e, Ez}Y(Z) = (e, Je + Bu>Y<Z) =
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Model hierarchy

Non-isothermal ! Isothermal

Model hierarchy (TRR154)!

EBuler equations
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@ TAIl too complex for

many applications.
@ 8 models, 2
TA3 |
TA4

! subhierarchies.

|
|

! |
! |

LP. Domschke, B. Hiller, J. Lang, C. Tischendorf, Modellierung von
Gasnetzwerken: Eine Ubersicht. TU Darmstadt (preprint), 2017
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Model hierarchy

Model hierarchy (TRR154)!

@ TAIl too complex for
many applications.

@ 8 models, 2
subhierarchies.

@ Consistent PHDAE
form for all but two
models.

@ Discard TA2 and ISO2.

LP. Domschke, B. Hiller, J. Lang, C. Tischendorf, Modellierung von
Gasnetzwerken: Eine Ubersicht. TU Darmstadt (preprint), 2017
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Non-isothermal model hierarchy (TA1,TA3,TA4)

PHDAE form of TA1

FEra121a = Jraetar + BratiTa,
TALATA TA TTAl TAUTA (TAL)
Yta1 = Y1, Brarl = Craerar

with zpp = (p,v,v) and H1ay = [ 2pv? + pgh + vdz.
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Non-isothermal model hierarchy (TA1,TA3,TA4)

PHDAE form of TA1

Eta1z1a = J1aetar + Bratqa,
T

(TA1)

Yta1 = Y1, Brarl = Craerar

with zpp = (p,v,v) and H1ay = [ 2pv? + pgh + vdz.

TA3: For long time and pipes, small velocity and high friction,
asymptotic analysis leads to H a3 = [ pgh + v dz,
Bz = diag(1,0,1), eras = [gh, v, 1]".
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Non-isothermal model hierarchy (TA1,TA3,TA4)

PHDAE form of TA1

Eta1z1a = J1aetar + Bratqa,
" (TA1)

Yta1 = Y1, Brarl = Craerar

with zpp = (p,v,v) and H1ay = [ 2pv? + pgh + vdz.

TA3: For long time and pipes, small velocity and high friction,
asymptotic analysis leads to H a3 = [ pgh + v dz,
Bz = diag(1,0,1), eras = [gh, v, 1]".

TAA4: Stationary assumption leads to Eqps = 0 and 1, = 0,
leaving etaq = etaz = [gh, v, 1],
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Isothermal Euler equations (ISO1)

Isothermal assumption (7' = T}, constant):
e Equation of state p = p(p, ;) = p(p).
@ Restrict to 250 = (p,v) and first two equations of (TA1).
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Isothermal Euler equations (ISO1)

Isothermal assumption (7' = T}, constant):
e Equation of state p = p(p, ;) = p(p).
@ Restrict to 250 = (p,v) and first two equations of (TA1).

@ No internal energy = friction should be dissipation.

oy —5: (0| [ +9h] [0
_ ‘ ox 2 —
[ ,0] 150 |:_f)g)dz —Aplv v %

~——
E(z50) J(z150)—R(2150)

R. Morandin (morandin@math.tu-berlin.de) A hierarchy of port-Hamiltonian models for gas networks



Isothermal Euler equations (ISO1)

Isothermal assumption (7' = T}, constant):
e Equation of state p = p(p, ;) = p(p).
Restrict to 250 = (p,v) and first two equations of (TAL).

No internal energy = friction should be dissipation.

Replace v in Hamiltonian: (50, = [ 3pv® + pgh + F(p) da.

Complete with 1 = U(2)e(z) and Big0; = Y (2)e(2), where
U(z)e = pey and Y (z2)e = e;. This is again a pHDAE.

Eﬁ] 70 = {—pf’ d;,)(i))] F +oh+ p(ﬂ)}

oz v

°
@ Pressure potential F(p) satisfying pF’(p) — F(p) = p,
°
°

E(z50) J(z150)—R(2150) eiso1(#i1s0)
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Isothermal model-hierarchy (1ISO1,I1SO3,1SO4)

Eiso14s0 = (Jiso — Riso)eisor + Bisoks
Biso1 = Ciso€isors
with #1501 = [ 3pv° + pgh + F(p) dz.

(1S01)

ISO3: For long time and pipes, small velocity and high friction,
asymptotic analysis? leads to #5035 = [ pgh + F(p)dz,
Eisos = diag(1,0), ejg03 = [gh + F(p),v]".

ISO4: Stationary assumption leads to E\gq4 = 0 and F g0, = 0,
leaving €504 = €503 = [9h + F(p), 2] "

2H. Egger, J. Giesselmann, Stability and asymptotic analysis for instationary
gas transport via relative energy estimates. ArXiv preprint, 2020.
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Generic PHDAE pipe model

B()i = ()~ REeC:) + By Brl | f|.
BEG

Input p is the inward boundary momentum.

Output (5 is the boundary Bernoulli invariant.
In TA models, R = 0.
In ISO models, AT, y; and By are empty.
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Network representation

A gas network is a oriented graph G = (V, &), where:
@ the vertices vy,...,v, € V are junctions, sources and sinks.

o the edges e!, ..., e™ € & are network components.

@® source
® sink
o junction
o—>—0 —)—<: — pipe
short pipe
—>— comp. stat.
-> - valve

Figure: GasLib-11: a simple example with 12 vertices and 12 edges.
There are 3 sources, 3 sinks, 2 compressor stations and 1 valve.
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Network representation

A gas network is a oriented graph G = (V, &), where:
@ the vertices vy,...,v, € V are junctions, sources and sinks.
o the edges e!, ..., e™ € & are network components.

o for this talk: all edges are gas pipes.

@® source

® sink
o junction
->— pipe

Figure: GasLib-11: a simple example with 12 vertices and 12 edges.
There are 3 sources and 3 sinks.

R. Morandin (morandin@math.tu-berlin.de) A hierarchy of port-Hamiltonian models for gas networks



Total system

Aggregating all gas pipe pHDAEs in block diagonal form, we get

Total network pHDAE

Ez = (J — R)e(z) + B,u + BrAT,
B = B,e(z),
Yr = B’;r“e(Z)?

with total Hamiltonian () = H,(21) + ... + H,, (™).
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Total system

Aggregating all gas pipe pHDAEs in block diagonal form, we get

Total network pHDAE

Ez = (J — R)e(z) + B,u + BrAT,
B = B,e(z),
Yr = B’;Ee<z)>

with total Hamiltonian () = H,(21) + ... + H,, (™).
o All pipes are still independent.

@ Coupling conditions to reduce degrees of freedom.
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Kirchhoff's laws

The algebraic sum of momenta
entering or leaving a node is 0.

Kp Pyt fo iy = gy
> 0 in sources,
H1 f, 4 < 0 in sinks,
Ho

0 in junctions.

Conservation of total mass.
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Kirchhoff's laws

Second Kirchhoff's law

The algebraic sum of momenta | The Bernoulli invariant at every
entering or leaving a node is 0. | node is continuously-defined.

Hp oy i 1 = [J} Bl=p2=p3=)
> 0 in sources, 1

Ky L < 0 in sinks, A; Bernoulli in-
1 i U 52 variant in v;.
2 0 in junctions. 0\
Conservation of total mass. Conservation of total energy.
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Special incidence matrix

Let A = [a;;] € R™™ be the oriented incidence matrix. J
Let A, = [Ay, A;] € R™>™ be the special incidence matrix. J
Let A, = [aﬂ € R™P be the port incidence matrix. J

R. Morandin (morandin@math.tu-berlin.de) A hierarchy of port-Hamiltonian models for gas networks



Special incidence matrix

Let A = [a;;] € R™™ be the oriented incidence matrix, i.e.,

—1 if e; leaves vertex v;,

a;; = +1 if e; enters vertex v;,

0 otherwise.

Rows correspond to nodes, columns to edges.

Let A, = [Ay, A;] € R™?*™ be the special incidence matrix. J

Let A, = [a};] € R™P be the port incidence matrix. J
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Special incidence matrix

Let A = [a;;] € R™™ be the oriented incidence matrix. J

Let A, = [Ay, A;] € R™?™ be the special incidence matrix, where
Ay=[A<0]and A, =[A > 0].

Rows correspond to nodes, columns to endpoints of edges.

Let A, = [afj} € R™P be the port incidence matrix. J
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Special incidence matrix

Let A = [a;;] € R™™ be the oriented incidence matrix. J

Let A, = [Ay, A;] € R™?>™ be the special incidence matrix. J

Let A, = [a};] € R™? be the port incidence matrix, defined as

» _ J1 ifwv;is the j-th source/sink node,
* 0 otherwise.

Rows correspond to nodes, columns to sources and sinks.
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Special incidence matrix

Let A = [a;;] € R™™ be the oriented incidence matrix. J
Let A, = [Ay, A;] € R™?*™ be the special incidence matrix. J
Let A, = [a};] € R™P be the port incidence matrix. J
| |
Agp = A, J Alp=2X J
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Network interconnection

By adding A i = 0 and replacing 3 = A\, we get

Interconnected network pHDAE

E 2 J—§ B, OT e(z) By 0 AT
0 [|a|=|=BL 0 All| n [+ 0 0]
0] [A 0 —A, 0] A 0 A, P

1% 2 4[]

with the same total Hamiltonian #(z).
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Additional comments

@ The network pHDAE can be modified to control /3 instead of
& in any subset of source/sink nodes.

@ In principle, different pipe models can coexist in a network:

o special care when coupling Bernoulli invariants;
o degrees of freedom allow to shift 5 with a constant.
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Additional comments

@ The network pHDAE can be modified to control /3 instead of
& in any subset of source/sink nodes.

@ In principle, different pipe models can coexist in a network:
o special care when coupling Bernoulli invariants;
o degrees of freedom allow to shift 5 with a constant.
@ For typical equation of state for ISO3 and ISO4, continuity of
[ is equivalent to continuity of p.
@ Alternative pH hierarchy for 1ISO2-4 with no gravity:

o simpler and easier to implement;
e inconsistent with TA1 and ISO1.
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Conclusions

@ We have written the Euler equations and other gas pipe
models as pHDAE.

@ Obtained energy-preserving interconnection of general gas
pipe networks.
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Conclusions

@ We have written the Euler equations and other gas pipe
models as pHDAE.

@ Obtained energy-preserving interconnection of general gas
pipe networks.

What next?

@ Study, extend and implement pH-consistent numerical
methods for discretization and model order reduction of gas
networks.

@ Develop a port-GENERIC formulation for the TA hierarchy, to
grasp the thermodynamics better.
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