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dissipative Hamiltonian structure, parabolic limit problem

Stability analysis via relative energy estimates

perturbations in data and parameters, asymptotic convergence, extension to networks

Structure preserving discretization
mixed FEM, convergence estimates via relative energy, asymptotic stability
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Gas flow through a long pipe

Gas transport model > alcros)\s-fs.e(t:.tional e};{gg, Dt diameter of
ipe, A friction
adip + 0z (apv) =0 pip on coefficien

9 (apv) + 9x(apv® + ap(p)) = — 75 apv|v| e
(ap . (ap p(p)) = —3papP > pressure law p = p(p)

with z € (0,¢) and ¢t > 0 see e.g. [BrouwerGasserHerty'13]
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Gas flow through a long pipe

» a cross-sectional area, D diameter of
pipe, A friction coefficient

» p gas density, v velocity
> pressure law p = p(p)

Gas transport model
adip + Oz (apv) = 0
i (apv) + 8z (apv® + ap(p)) = — 5 apvlv|

with z € (0,¢) and ¢t > 0 see e.g. [BrouwerGasserHerty'13]

Reformulation: Friction dominated scaling t = 7, v = ew, 55 = &~ fore > 0 small
e ' 2D €

and rewriting model equations leads to
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Gas flow through a long pipe

Gas transport model > a.cross-s.ec_tional area, D diameter of
pipe, A friction coefficient
adip + Oz (apv) = 0 . .
o E 5 N » p gas density, v velocity
d(apv) + Oa(apv” +ap(p)) = —5papvlel | pressure law p = p(p)

with z € (0,¢) and ¢t > 0 see e.g. [BrouwerGasserHerty'13]

Reformulation: Friction dominated scaling t = %r, v = ew, % = E%'y for e > 0 small
and rewriting model equations leads to

. » state variables: p, w

Model equations g

» co-state variables:
adrp + Ozm(p,w) =0

mass flow rate m(p, w) = apw

2 = —
b i il = el total specific enthalpy h(p, w) = %wQ + P'(p)

with pressure potential P(p) = p [/ 2G) dr such that £0,p(p) = 0. P’ (p)

Note: Parabolic limit problem in high friction regime for ¢ — 0
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Transformation to dissipative Hamiltonian system

Reformulated model equations Total energy of the system:
(1) adrp+ 8em(p,w) =0 H(p,w) = [ a(3e’pw? + P(p)) da

(2) 0w+ dhlpw) = —wlw| o S _gp 2y
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Transformation to dissipative Hamiltonian system

Reformulated model equations Total energy of the system:
(1) adrp+ 0am(p,w) =0 = [y a(3epw’ + P(p)) dw
(2) 828-,—11) + 8Ih(p7 w) = —7|w|w = % = ah, m = 52m

Variational formulation: Multiply (1) (2) with suitable test functions ¢, r, integrate
over pipe (0, £) with notation (u, v) fo uv dw to get

(adrp,q) + (0zm,q) =0 VgeQ
(€0-w,7) = (h, 0or) + (Y m, 1) = —hr g Vr € R
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Transformation to dissipative Hamiltonian system

Reformulated model equations Total energy of the system:
(1) adrp+ 0am(p,w) =0 = [y a3’ pw’ + P(p)) dz
2) 0w+ d:h(pw) = —ww| = % — ah, % g

Variational formulation: Multiply (1) (2) with suitable test functions ¢, r, integrate
over pipe (0, £) with notation (u, v) fo uv dw to get
(adrp,q) + (0zm,q) =0 VgeQ
(€0-w,7) = (h, 0or) + (Y m, 1) = —hr g Vr € R

Abstract dissipative Hamiltonian system
Coru+ (J + R(u))z(u) = Boz(u)
z(u) = C"H/ (u)

» state variables u = (p, w)
» co-state variables z(u) = (h,m)
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Transformation to dissipative Hamiltonian system

Reformulated model equations Total energy of the system:
(1) adrp+ 8em(p,w) =0 H(p,w) = [ a(3e’pw? + P(p)) da
(2) 0w+ dhlpw) = —wlw| o S _gp 2y

Variational formulation: Multiply (1)—(2) with suitable test functions ¢, r, integrate
over pipe (0, £) with notation (u,v) := f(f uv dz to get
(adrp,q) + (0zm,q) =0 VgeQ
(£0,w,7) — (h, 0ur) + (v, 1) = —hrg Vr € R

Abstract dissipative Hamiltonian system
Coru+ (J + R(u))z(u) = Baz(u)
z(u) = C"H/ (u)

» state variables u = (p, w)
» co-state variables z(u) = (h,m)
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Transformation to dissipative Hamiltonian system

Reformulated model equations Total energy of the system:
(1) adrp+ 0am(p,w) =0 = [y a3’ pw’ + P(p)) dz
2) 0w+ d:h(pw) = —ww| = % — ah, % g

Variational formulation: Multiply (1) (2) with suitable test functions ¢, r, integrate
over pipe (0, £) with notation (u, v) fo uv dw to get
(adrp,q) + (0zm,q) =0 VgeQ
(€0-w,7) = (h, 0or) + (Y m, 1) = —hr g Vr € R

Abstract dissipative Hamiltonian system
Coru+ (J + R(u))z(u) = Boz(u)
z(u) = C"H/ (u)

» state variables u = (p, w)
» co-state variables z(u) = (h,m)

Power balance:
9 Mo, w) = (€O, CH () = —(R(w)z (), 2(w) + (Boz(u), 2(u)
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Instationary gas flow in a single pipe
dissipative Hamiltonian structure, parabolic limit problem

Stability analysis via relative energy estimates

perturbations in data and parameters, asymptotic convergence, extension to networks

Structure preserving discretization
mixed FEM, convergence estimates via relative energy, asymptotic stability
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Stability analysis on abstract level

Abstract system: Perturbed system:
Coru+ (J — R(u))z(u) = Boz(u) Co-u+ (J — R(u))z(u) = Boz(u) +7
z(u) = C "H/ (u) z(@) = C '"H (w)
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Stability analysis on abstract level

Abstract system: Perturbed system:
Coru+ (J — R(u))z(u) = Boz(u) Co-u+ (J — R(u))z(u) = Boz(u) +7
z(u) = C "H/ (u) z(@) = C '"H (w)

» Measure distance between w and @ by relative energy see e.g. [Dafermos’16]

H(ulw) = H(u) - H(@) — (H' (@), u — @)
» Energy identity:

CH(uli) =~ (R(w)z(u) ~ R@)(@), 2(w) — 2(@) + 7, (w) - (@)
+ (Bo(z(w) — 2(8)), 2(u) — 2(@)) + (00,8, 2(u) — 2(&) — € H"(@)(u - @)
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Stability analysis on abstract level

Abstract system: Perturbed system:
Coru+ (J — R(u))z(u) = Boz(u) Co-u+ (J — R(u))z(u) = Boz(u) +7
z(u) = C "H (u) z(u) = C'"H'(q)

» Measure distance between u and u by relative energy see e.g. [Dafermos’16]
H(uli) = H(uw) — H(@) — (K (@), u - @)

» Energy identity:

%H(U\ﬁ) = —(R(u)z(u) — R(u)z(), 2(u) — z(w)) + (v, z2(u) — 2(u))

+ (Ba(z(u) — 2(w)), z(u) — z(@)) + (CO,U, z(u) — z(@) — C"H"(@)(u — @)
» Assume that right hand side can be estimated by

rhs < C M (ulti)~D(ul@)+P(7) + Po(z(w) — 2(@))
with relative dissipation functional D(u|u) > 0 and perturbation functionals P, Ps

» Use Gronwall to obtain stability estimate
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Stability analysis on abstract level

Main assumptions:

(C1)  —~(R(w)z(w) — R(@)z(@), z(u) — 2(@)) < C1H (uli)~2D(ula)

(C2)  (Cor, 2(u) — z(w) — C'H" (@) (u — @) < CoH(ulu)

(C3) (7, 2(u) — 2(u)) < CsH(u|u)+D(ulu) +P(r)
(C4) (Ba(z(u) — z(u)), 2(u) — 2(u)) < Po(z(u) - z(u))

with relative dissipation functional D(u|u) > 0 and perturbation functionals P, Ps.
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Stability analysis on abstract level

Main assumptions:

(C1) —(R(u)z(u) — R(u)z(u), 2(uv) — 2(u)) < CrH(ufu)—2D(ulu)

(C2)  (Cor, 2(u) — z(w) — C'H" (@) (u — @) < CoH(ulu)

(C3) (7, 2(u) — 2(u)) < CsH(ulu)+D(ulu) + P(7)
(C4) (Bo(z(u) — z(u)), 2(u) — 2(u)) < Po(z(u) — z(u))

with relative dissipation functional D(u|u) > 0 and perturbation functionals P, Ps.
Additionally, assume norm bounds

(CO) collu —@[l¢ < H(ulu) < Collu — g
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Stability analysis on abstract level

Main assumptions:

(C1)  —~(R(w)z(w) — R(@)z(@), z(u) — 2(@)) < C1H (uli)~2D(ula)

(C2)  (Cor, 2(u) — z(w) — C'H" (@) (u — @) < CoH(ulu)

(C3) (7, 2(u) — 2(u)) < CsH(u|u)+D(ulu) +P(r)
(C4) (Ba(z(u) — z(u)), 2(u) — 2(u)) < Po(z(u) - z(u))

with relative dissipation functional D(u|u) > 0 and perturbation functionals P, Ps.
Additionally, assume norm bounds

(CO) collu —@[l¢ < H(ulu) < Collu — g

Main result:

collu(m)—a(r)|I3 + / " DD () do
< Collu(0) — @(O)| + / " (P(R(0)) + Po(2(u(0)) — 2(@(0)))) do
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Application to gas transport

Perturbation in parameters ¢, 4, initial and boundary data

Variational formulation:

(€20, w, ) — (h, Bu) + (’ylw‘m r) = —harlg Vr € R

Perturbed formulation:
(ad-p, q) + (01, q) =0 Vg €Q
(€20, 1) — (h, Bur) + (a'“gm r) = —har|§ Vr € R

» Inserting solution of perturbed problem (5, ) in original equations yields residual

71=0, T2=(" &) (0 + $0:|0*) + (v —4)

» Verify assumptions (C0) — (C4) for gas flow problem to obtain stability result
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Application to gas transport

» Perturbation in parameters é, 4, initial and boundary data
» Show abstract conditions (C0)—(C4) under following reasonable assumptions

Main assumptions
(A1) Bounds on parameters 0 < ¢,6,<&, 0 <y <v,9<7

(A2) Smooth solutions (p, w), (p,w) with bounded states, i.e.,
0<p<pp<p lullb] <o

(A3) Subsonic flow, i.e., P(p) smooth, strongly convex with pP"(p) > 482w

H. Egger, J. Giesselmann (2020): Stability and asymptotic analysis for instationary gas transport via relative
energy estimates. arXiv:2012.14135.
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Application to gas transport

» Perturbation in parameters é, 4, initial and boundary data
» Show abstract conditions (C0)—(C4) under following reasonable assumptions

Main assumptions
(A1) Bounds on parameters 0 < ¢,6,<&, 0 <y <v,9<7
(A2) Smooth solutions (p, w), (p,w) with bounded states, i.e.,

0<p<pp<p |wlli] <

(A3) Subsonic flow, i.e., P(p) smooth, strongly convex with pP"(p) > 482w

Important ingredients
» (C0) Uniform norm bounds ||p — p||22 + €°||w — @||22 < cg " H(p, w|p, b))

» (C1) Estimation of dissipation term

A A A ~ |0 3 ~ A~ A
—(Y(|wlw — [B]b), m — ) < 2L 31 (p w|p, )~ Laypllw — ][]

H. Egger, J. Giesselmann (2020): Stability and asymptotic analysis for instationary gas transport via relative
energy estimates. arXiv:2012.14135.
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Application to gas transport

Main result:
lp(r) = A(T)[ 72 + €2[Jw(T)—i(7)][7 2 +/0 l[w(s) —w(s)|[7s ds
< Ce“ (|1p(0) — p(0)][72 + €2[[w(0) — B(0)] |72

+|’Y—’A)’|3/2+|52_é2|+/ |ha(8)—i"3(3)|3)
0

where ¢, C depending only on bounds in assumption and on 9, p, 0.

Consequences:

» Stability of sub-sonic bounded state solutions with respect to perturbations in
model parameters and initial and boundary data

» Uniqueness: ¢ =¢, y=~, ho =hs = p=p, W =w

» Quantitative estimates for parabolic limite — 0

H. Egger, J. Giesselmann (2020): Stability and asymptotic analysis for instationary gas transport via relative
energy estimates. arXiv:2012.14135.
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Extension to networks

» Network given by directed graph with pipes e € £ and vertices v € V

o

Coupling at pipe junctions: es
JO—@

» Gas transport equations hold on each pipe e € £
» conservation of mass: >__ ., m (v)n‘(v) =0

» continuity of total specific enthalpy: h°(v) = h” @

Network = sum of pipes + coupling conditions: (-,-)e =3 .(-,")e
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Extension to networks

» Network given by directed graph with pipes e € £ and vertices v € V

("

Coupling at pipe junctions: es
JO—@

» Gas transport equations hold on each pipe e € £

» conservation of mass: >__ ., m (v)n‘(v) =0

» continuity of total specific enthalpy: h°(v) = h” @
Network = sum of pipes + coupling conditions: (-,-)e =3 .(-,")e

Variational formulation on network:
(adrp,q)e + (0zm,q)e =0 Vg€ Q
(20, w,7)e — (h, Ber)e + (fy%'m, r)e = —(hg,7n)v, Vr € R

» Variational formulation has same structure as on single pipe

» Consequence: Stability result directly transfers to networks!
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Instationary gas flow in a single pipe
dissipative Hamiltonian structure, parabolic limit problem

Stability analysis via relative energy estimates

perturbations in data and parameters, asymptotic convergence, extension to networks

Structure preserving discretization
mixed FEM, convergence estimates via relative energy, asymptotic stability
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Structure preserving discretization

Fully discrete scheme: Find p, € Q) C Q, my € R, C R so that

(0P, an)e + (Bamiy, qn)e =0 Van € Qn

(20, Wk, mh)e — (AR, Oarh)e + (YWh wit, Th)e = —(h3,Tn)v, Vrn € Rp

with @ o= 2k = L2 D prony and 9,07 = L (o7 — i),

apl aZlop] ar

» Based on variational formulation, mixed FEM in space, implicit Euler in time

» Stability analysis via relative energy estimates transfers to discrete problem

In preparation: H. Egger, J. Giesselmann, T. Kunkel, N. Philippi: An asymptotic preserving Galerkin scheme
for instationary gas transport in pipe networks.
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Structure preserving discretization

Fully discrete scheme: Find p, € Q) C Q, my € R, C R so that

(0P, an)e + (Bamiy, qn)e =0 Van € Qn

(20, Wk, mh)e — (AR, Oarh)e + (YWh wit, Th)e = —(h3,Tn)v, Vrn € Rp

with @j; := Tk, hy = Le? a‘?f,fip + P'(p}), and 0-pi = 2= (ph — pp ")

» Based on variational formulation, mixed FEM in space, implicit Euler in time

» Stability analysis via relative energy estimates transfers to discrete problem

Consequences:
» Discrete stability and asymptotic preserving scheme for e — 0
» Quantitative convergence rates

— choose perturbed solution p, w as projections of exact solution p, w in analysis

In preparation: H. Egger, J. Giesselmann, T. Kunkel, N. Philippi: An asymptotic preserving Galerkin scheme
for instationary gas transport in pipe networks.
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Numerical results

Transient scenario on GasLib-11

see [GasLib - A Library of Gas Network Instances]

» Network parameters from
‘GaslLib-11.net’

> p(p) = c2p with ¢ = 343m/s

» Compressor stations and valves
handled as pipes of length 0

» Time interval of 24h

» Initial data given by steady state

Boundary conditions:
» Constant enthalpy h at entries
» Mass flow m at exit01, exit02, exit03 20 1

I I
10 15 20 25

time [b]

=
e

mass flow [kg/s|
5
)

merical results



Numerical results

Discretization error
» ¢ = 1, relative error w.r.t. L2-norm at t = 24h
» Elements per edge/ time steps: 2¢, i = 2,..,10 15703 - 23103 :

Errorinp | Rate || Errorinm | Rate
7.74e-4 1.02 1.89e-3 1.19
exit01 exit02 exit03 3.84e-4 1.01 8.22e-4 1.20
15 - — 445 - - 44 T T : : : :

3.72e-4 1.14
1.76e-4 1.08
8.51e-5 1.05
4.19e-5 1.02
2.08e-5 1.01

1.91e-4 1.02
9.54e-5 1.00
4.77e-5 1.00
2.38e-5 1.00
1.19e-5 1.00

IS
[
o
T
L

IS
w
=

density [kg/m®]
&
2

I L 42 I L

IS
&

10 20 0 10 20

time [u] time [b] time [h]




Numerical results

Discretization error
» ¢ = 1, relative error w.r.t. L2-norm at t = 24h

' Errorinp | Rate || Errorinm | Rate

» Elements per edge/ time steps: 2*, : = 2,..,10 15703 - 23163 -
7.74e-4 1.02 1.89e-3 1.19
exit01 exit02 exit03 3.84e-4 1.01 8.22¢-4 1.20
" I T 1.91e4 | 1.02 372e-4 | 1.14
2 sy 1wt 9.54e5 | 1.00 1.76e-4 1.08
= uf J 4.77¢-5 1.00 8.51e-5 1.05
E | a35) 1 2.38e-5 1.00 4.19¢-5 1.02
= 1.19e-5 1.00 2.08e-5 1.01

1 w0 Bo 0w Yo w
time [h] time [h] time [h]

Asymptotic convergence
» Relative error to solution for e = 0 w.r.t. L2-norm at t = 24h
» 32 elements per edge, 500 time steps

|| =1 | e=te1 | e=te2 | e=1e3 | e=1e4 | e=1e5
Error in density p 5.64e-5 5.64e-7 5.64e-9 5.64e-11 5.64e-13 | 5.82e-15
Error in mass flow m 3.18e-5 3.19e-07 3.19e-09 3.19e-11 3.17e-13 2.25e-14

Observation: Can compute gas transport using parabolic problem!




Instationary gas flow and stability analysis’
» Suitable (rescaled) variational formulation has dissipative Hamiltonian structure

» Relative energy estimates yield stability w.r.t. perturbations, asymptotic
convergence, uniqueness for sub-sonic, bounded state solutions of gas equations

» Extension to networks: Structure is conserved, stability results directly transfer

Structure preserving discretization®
» Based on variational formulation using mixed FEM in space, implicit Euler in time

» Stability analysis via relative energy estimates directly transfers to discrete
problem: Discrete stability, asymptotic preserving, quantitative convergence rates

» Numerical tests indicate that modeling with parabolic problem is appropriate

"H. Egger, J. Giesselmann (2020): Stability and asymptotic analysis for instationary gas transport via relative
energy estimates. arXiv:2012.14135.

2In preparation: H. Egger, J. Giesselmann, T. Kunkel, N. Philippi: An asymptotic preserving Galerkin scheme
for instationary gas transport in pipe networks.

Summary
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