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BARON’S RELAXATIONS

* Nonlinear outer approximations of
factorable functions

— Ryoo and Sahinidis (1995)

* Polyhedral outer approximations
— Tawarmalani and Sahinidis (2005)

* Some nonlinear relaxations

— Khajavirad and Sahinidis (2018) /N
Original NLP becomes convex <

— Nohra, Raghunathan and Sahinidis (2021)
Original NLP does not become convex This talk

* Dynamic relaxation selection
— LP, NLP, MIP
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PROBLEM FORMULATION

*  We consider mixed-integer quadratic programs (MIQPs) of the form:

min X Qz +¢' z
T
s.t. Az =0
Czr<d
[<x<u
r;€Z, VielIc{l,...,n}
where @ € R**" is a symmetric matrix which may be indefinite

and A e R™" peR™, C e RPX™, dcRP

* Inequalities handled but not exploited
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BASIC RELAXATION APPROACHES

*  Factorable programming relaxations (McCormick, 1976)

. .S ap.p S — AL
Introduce new variables X’J 2 UsTj + UjTi — Uil

g Xii > lixs + iz — Uils
Xij =zizj, 1,5=1,...,m - ij 2 6i%j + 1T — Lil

qij # 0

X,;j < U;T5 + lj:cz- - ’Ll,z'lj

X,;j < l,,;xj +U;T; — liuj

McCormick inequalities

* Reformulation Linearization Technique (RLT) relaxations (Sherali and Adams 1990, 1992)

Reformulation step: construct reformulated problem by adding redundant nonlinear constraints

Linearization step: linearize reformulated problem by introducing new variables

* Semidefinite programming relaxations (Shor, 1987)

Introduce symmetric matrix of new variables

X =zzT —_— X-zzT >0

Semidefinite constraint
Loss of sparsity; quadratic increase in number of variables
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REFORMULATION-BASED APPROACHES

* Eigenvalue reformulation (Rosen et al., 1987)

Q=UAUT = f: )\Zuzu;—’" A; : i-th eigenvalue of Q

i=1 u; : eigenvector associated with the i-th eigenvalue of Q

— Use eigendecomposition of the quadratic matrix to construct a convex quadratic relaxation

— Resulting relaxation yields very weak bounds

* Undominated d.c. decompositions of quadratic functions (Bomze and Locatelli, 2004)

min &' Qz+q' z = f(z) - g(=) f(z)=2"(Q-B)z+q'c  g(z)=2"Ba

The matrix B is chosen such that B>0and Q- B >0

An SDP-based algorithm is proposed in order to find B

* Quadratic convex reformulations for binary quadratic programs (Billionnet et al., 2009, 2013)

— Reformulate original problem into another one whose continuous relaxation is convex

— Perturbation parameters used to construct the reformulated problem obtained by solving
certain SDPs
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EIGENVALUE RELAXATION

Original min z7Qz +¢*
problem i : (MIQP)
st. Az=b, Cx<d, l<x<wu, x;€Z, Vielc{l,...,n}

n

n
. T T 2 , _
Reformulated min Qr+q T+ae )y, T; — e Y |7 l—> Relax using concave envelope
problem =1 =1
st. Ax=b, Cx<d, l<x<wu, |r;e€Z, Vielc{l,...,n}

where o, > . . -
e20 —> Relax integrality conditions

The concave envelope of z2 over [l;,u;] is given by the line (I; + u;)z; — l;u;

/
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EIGENVALUE RELAXATION

Original min z7Qz +¢*

problem i _ (MIQP)
st. Az=b, Cx<d, l<x<u, zi€Z, VielIc{l,...,n}

Quadratic min 27 Qz +¢' z + a, Z xf — Ol Z ((l; +ug)x; — L)

relaxation =1 =1 (EIG)

st. Ax=b, Cx<d, [<x<u

where o, >0
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EIGENVALUE RELAXATION

Original min z7Qz +¢*
T

(MIQP)
problem st. Az=b, Cx<d, l<x<wu, x;€Z, Vielc{l,...,n}
Quadratic min z7 (Q + ael) z + (- el + 1)) T+ aclTu
relaxation (EIG)

st. Ar=b, Cr<d, [<x<u

where a,. >0
To ensure convexity of this relaxation, we must choose a. such that Q +a.I, >0

This is equivalent to choosing a. > —min(0, Apin (Q))

The tightest convex relaxation of form (EIG) for which Q + a.I, >0 is obtained by setting
e = —min(0, Amin(Q))

Under this approach, we convexify the objective function of (MIQP) by perturbing the
diagonal elements of the matrix @)
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EIGENVALUE RELAXATION

Original min z7Qz +¢*
T

(MIQP)
problem st. Az=b, Cx<d, l<x<wu, x;€Z, Vielc{l,...,n}
Quadratic min z7 (Q + ael) z + (- el + 1)) T+ aclTu
relaxation (EIG)

st. Ar=b, Cr<d, [<x<u
where a, = —min(0, Apin(Q))
Remarks:

— Hammer and Rubin (1970) is one of the earliest works considering convexification methods based
on the smallest eigenvalue of the quadratic matrix

— The construction of this relaxation can be seen as an application of d.c. programming methods (Tuy,
1995) or alphaBB techniques (Androulakis et al., 1995)

— Despite its simplicity, the eigenvalue relaxation can provide significantly tight bounds
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EIGENVALUE RELAXATION

*  Proposition 1:

Assume that the matrix @ is indefinite. Let ae = —Anin(Q@). Then, we have:

UEIG = Ir;_in T Qo x + qgea: + ko, (EIG) USDP_EIG = gg? (Q,X)+q"x (SDP_EIG)
st. Az=b, Czx<d, [<x<u s.t. Az=b, Cx<d, l<z<u
where Qq, = Q + ael, <:> X -—zzf >0

o, =g~ e(l+u) (I, X)-(+w)Tz+1Tu=0
ko, = aolTu

Georgia Institute of Technology
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GENERALIZED EIGENVALUE RELAXATION

Original min z7Qz +¢*
T
problem

(MIQP)
st. Ax=b, Cx<d, l<x<wu, x;€Z, Vielc{l,..., n}

Reformulated min 27 Qx +q¢"z + i_-lz 2 —g_;IZ T2 +Q||A:c - b|? l
v i=1

problem =1 Use the same
perturbation parameter

st. Ax=b, Cx<d, l<x<wu, z;€Z, Vielc{l,..., n}

where ag > 0 for the z7 terms and the
term | Ax - b|?
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GENERALIZED EIGENVALUE RELAXATION

Original min z7Qz +¢*
problem i (MIQP)
st. Ax=b, Cx<d, l<x<wu, x;€Z, Vielc{l,..., n}
n n I
Reformulated min z7Qz +q¢ Tz + Qg Z :cf — Qg Z a;? + 0| Az — b||2 —— Relax using concave
problem ’ =1 =1 envelope

st. Ax=b, Cx<d, l<x<wu, |z;e€Z, Vielc{l,..., n}
where a4 >0

—> Relax integrality conditions

Georgia Institute of Technology
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GENERALIZED EIGENVALUE RELAXATION

Original min z7Qz +¢*
problem i (MIQP)

st. Ax=b, Cx<d, l<x<wu, x;€Z, Vielc{l,..., n}

n n
Quadratic min zTQz +q¢%z + Qg Z :cf - Qg Z (s + ui)xs — Liwg) + ag)| Az - b||2
T . .
relaxation =1 =1

st. Az =b, Czx<d, [<zx<u

where a4 >0

(GEIG)

Georgia Institute of Technology
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GENERALIZED EIGENVALUE RELAXATION

Original min z7Qz +¢* (MIQP)

problem st. Az=b, Cx<d, l<x<wu, x;€Z, Vielc{l,...,n}
Quadratic  min 27 (Q+ oy (I+ATA))z+ (q-a, (24Tb+1+u)) z+a, ({Tu+b7b) CEIG
relaxation ( )

st. Az =b, Cxr<d, l<x<u

where ag4 > 0

To ensure convexity of this relaxation, we must choose o, such that @ +a, (I + ATA) >0

*  Proposition 2

Let ay > —~min(0, Amin(Q, I, + AT A)). Then, (GEIG) is a convex quadratic program.

The tightest convex relaxation of form (GEIG) for which Q + ¢, (I + ATA) > 0 is obtained by
setting o, = —min(0, Amin(Q, I, + AT A))

Georgia Institute of Technology
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GENERALIZED EIGENVALUE RELAXATION

Proposition 3:

Consider the eigenvalue relaxation and the generalized eigenvalue relaxation
pEig = min z7Qq, z + qgex + ke, (EIG) UGEIG = mMin a:TQaga: + qgga: +kq, (GEIG)
st. Ar=b, Cx<d, l<z<u st. Ax=b, Cx<d, l<z<u
where Qo = Q + @I, where Qq, = Q + ag (I + AT A)
Q. = q—ae(l+u) o, =~ g (24T +1+u)
ko, = aelTu ko, = ag (ITu +bTb)
Let o = —min(0, Amin(Q)) in (EIG) and oy = —min(0, Amin(Q, In + AT A)) in (GEIG). Then, the generalized
eigenvalue relaxation is at least as tight as the eigenvalue relaxation, i.e., uggig > prIG-

Georgia Institute of Technology
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GENERALIZED EIGENVALUE RELAXATION

*  Proposition 4:

Assume that the matrix @ is indefinite. Let oy = ~Amin(Q, I, + AT A). Then, we have:

HGEIG = min 2" Qa,x + ¢4, T +ka, (GEIG) HSDP.GEIG = Iin (@,X)+q" (SDP_GEIG)
st. Az=b, Cz<d, l<z<u st. Az =b, Cz<d, l<z<u
where Qa, = Q + ag (I + AT A) <:> X—zzT >0

o, =~ g (24T +1 +u)

T
Ky = g (I + 67D) (In+ ATA,X) (I +u+2470) o+ Tu+b'0=0
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EIGENVALUE RELAXATION IN THE NULLSPACE OF A

Original min z7Qz +¢*
problem i : (MIQP)
st. Az=b, Cx<d, l<x<wu, x;€Z, Vielc{l,...,n}
Quadratic mmin 2T (Q+a,ln)z+(q-ay(l+u) z+a,lTu
relaxation (EIGNS)
st. Ar=b, Cr<d, [<x<u

where a, >0

This relaxation has the same form as the eigenvalue relaxation, but in this case a, is
determined by making use of the nullspace of A

* Proposition5

Denote by Z an orthonormal basis for the nullspace of the matrix A. Let o, > —min(0, Amin(Z7QZ)). Then, (EIGNS)
is a convex quadratic program.

The tightest convex relaxation of form (EIGNS) is obtained by setting
a, = —min(0, \min (ZTQZ))
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EIGENVALUE RELAXATION IN THE NULLSPACE OF A

*  Proposition 6:

Consider the generalized eigenvalue relaxation and the eigenvalue relaxation in the nullspace of A
JGEIG = min :I:TQ%:U + q:fgx +ka, (GEIG) pEIGNS = min 7 Qq, z + qux +kq, (EIGNS)
st. Az =b, Cx<d, I<z<u st. Az=b, Czx<d, l<z<u
where Qag =Q+ag (I+ATA) where Qaz =Q+a,l,

o, =~ g (24T +1 +u) Qo, = q— (1 +u)

ko, = ag (1Tu+b7b) ko, = alTu
Let oy = —min(0, Amin(Q, I, + AT A)) in (GEIG) and a, = —min(0, Amin(Z7QZ)) in (EIGNS). Then, the eigenvalue
relaxation in the nullspace of A is at least as tight as the generalized eigenvalue relaxation, i.e., urigNs 2 UGEIG-
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EIGENVALUE RELAXATION IN THE NULLSPACE OF A

Proposition 7:

Assume that the matrix Z7QZ is indefinite. Let o, = ~Amin(Z7QZ). Then, we have:

MEIGNS = min 2T Qa, T+ gL T+ ks, (EIGNS) HSDP_EIGNS = Iin (Q,X)+q"z (SDP_EIGNS)

s.t. Ax=b, Cx<d, l<z<u st. Az=b, Czx<d, l<z<u

where Qq, = Q + a1, <:> X-zzT >0
o, =q - az(l+u) (I, X)-(l+u) z+1Tu=0

(ATA, X) - (247b) z+b5Tb=0

ko, = a Ty
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DETERMINING Z2'QZ

To determine Z7QZ we need to:

1. Calculate the nullspace basis Z. This can be done through a QR factorization which
requires O(n®) FLOPS.

2. Compute ZTQZ, which is the projection of Q onto the nullspace of A. This also
requires O(n®) FLOPS.

Question:

Can we obtain a good approximation of A\y,i,(Z7QZ) without explicitly calculating Z ?

Georgia Institute of Technology
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EIGENVALUE RELAXATION IN THE NULLSPACE OF A

*  Proposition 8

Let 6 be a real scalar. Then, the following hold:
(2) If the matrix @ is indefinite, Amin (@, I, + AT A) is a strictly increasing function of & for § > 1.

(b) lims_ 00 Amin(Q, In + AT A) = min(0, A\min (ZT QZ)).

This proposition implies that we can obtain a good approximation of the bound given by
the eigenvalue relaxation in the nullspace of the equality constraints

. T T T
min +a,l,)x+(g—a,(l+u)) z+o,l" u
st. Ax=b, Czr<d, [<x<u

where a, = —min(0, \pin(Z7Q2))

by solving the following quadratic program

mgn tTQx +q z +a(8)(z"z - (1 +u) Tz +1Tu) Ha(s)-6- | Az - b|? (QP(9))

st. Az=b, Cxr<d, [<x<u

where a(8) = ~Amin(Q, I, + IAT A)

— This term vanishes for any feasible x

We can drop this term and still have a

convex quadratic relaxation
for a sufficiently large value of ¢
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SPECTRAL RELAXATIONS

pEIG = min 2" Qa2+, T +ka, (EIG) <:> psDP BIG = miD (Q,X)+q¢"x (SDP_EIG)
st. Ar=b, Cx<d, I[<xz<u st. Az=b, Cz<d, l<z<u
where Qq, = Q + al, X-zzT >0

Qo =4 — ae(l +u)

L, X)- l+u)Tz+1Tu=0
o (L, X) - (1+ )

Qe = _)\min(Q)
paEIG = min 2" Qo, @ + ¢y, T + ko, (GEIG) <:> KSDP_GEIG = 15151(1 (Q,X)+q'z (SDP_GEIG)
st. Ar=b, Cr<d, l<z<u st. Az=b, Cz<d, l<z<u
where Qq, = Q +ay (I + ATA) X-zzl'>0

oy = q - g (2ATD+1+u)
ka, = ag (1Tu+bTb)
Qg = _Amin(Q7 I’n + ATA)

(I + ATA, X) — (1 +u+247b) g+ 1Tu+ 76 =0

HEIGNS = Tin 27 Qo, T + q, T + ko, (EIGNS) <:> HSDP_EIGNS = Min (@, X)+q"z (SDP_EIGNS)
st. Ax=b, Czr<d, l<x<u st. Ax=b, Cz<d, I<z<u
where Q, = Q + I, X-zzT >0

Go, =q—0x(l+u
ko, = o lTu( ) (I, X)-(+u) z+1Tu=0
QA — 4

;= “Amin(Z27QZ) (ATA, X) - (247b) £ +5Tb=0

UEIGNS 2 UGEIG 2 UEIG

Georgia Institute of Technology
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IMPLEMENTATION IN BARON

* Incorporated spectral relaxations in the global optimization solver BARON

— BARON'’s default portfolio of relaxations:
LP relaxations
Convex NLP relaxations

MILP relaxations
— Expanded BARON's portfolio of relaxations by adding the spectral relaxations
New QP relaxations invoked at nonconvex nodes
Eigenvalue and generalized eigenvalue problems solved with LAPACK
Convex QP relaxations solved with CPLEX
— Implemented dynamic relaxation selection strategy
Switches between polyhedral and quadratic relaxations throughout the tree based on

their relative strength (similar to Khajavirad and Sahinidis, 2018)

 Developed spectral branching rule

— Increase the impact of branching decisions on the bounds given by the spectral relaxations

Georgia Institute of Technology
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SPECTRAL BRANCHING

Georgia Institute of Technology

. T T _ _ - T T = 2
min 2" Qr+q 0 26 44 73 119 min z7Qz + ¢z + . z?—z;
¥ . g-|2% 0 45 z ;( ) (EIG)
s.t. z€{0,1} a4 -45 o0 —187 st. ze[0,1]"
-73 11 84
where ae = —Amin (Q)
Root node: Amin(Q) =-149.8 Set of branching candidates: B={1,2,3,4}

Branch on the variable that leads to the largest increase in the smallest eigenvalue of the quadratic matrix

Branchon z;: Branch on zs: Branch on z3: Branchon z4:

. 0 -45 11 A 0 44 -73 i 0 26 -73 . 0 26 44

Q1 =|-45 0 84 Q2=| 44 0 84 Q3= 26 0 11 Q+1=1]26 0 -45
11 84 0 -73 84 0 -73 11 0 44 -45 0

Spectral branching with complete enumeration (requires the solution of |B| eigenvalue problems)

Amin (Q1) = —100.2 Amin(Q2) = -135.3 Amin(Q3) = -81.5 Amin(Q4) = -77.3
Approximation 1: Use Gershgorin’s Circle Theorem (GCT) to obtain a lower bound estimate for Amin(Qi)
AECT(Q;) = -129 ASCT(D,) = —157 ASCT (D) = -99 AECT (D) = -89
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SPECTRAL BRANCHING

. T T _ _ - T T = 2
min 2" Qr+q 0 26 44 73 119 min z7Qz + ¢z + . z?—z;
¥ . g-|2% 0 45 z ;( ) (EIG)
s.t. z€{0,1} a4 -45 o0 —187 st. ze[0,1]"
-73 11 84
where ae = —Amin (Q)
Root node: Amin(Q) =-149.8 Set of branching candidates: B={1,2,3,4}

Branch on the variable that leads to the largest increase in the smallest eigenvalue of the quadratic matrix

Branchon z;: Branch on zs: Branch on z3: Branchon z4:

. 0 -45 11 A 0 44 -73 i 0 26 -73 . 0 26 44

Q1 =|-45 0 84 Q2=| 44 0 84 Q3= 26 0 11 Q+1=1]26 0 -45
11 84 0 -73 84 0 -73 11 0 44 -45 0

Spectral branching with complete enumeration (requires the solution of |B| eigenvalue problems)

Amin (Q1) = —100.2 Amin(Q2) = -135.3 Amin(Q3) = -81.5 Amin(Q4) = -77.3

Approximation 2: Let v be the eigenvector corresponding to A,,;, (@)
Select as branching variable the one corresponding to the entry of v with the largest magnitude
0.50
0.30
The eigenvector corresponding to Amin (@) is given by v = [ 0. 56}
| 0.58 |
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TEST SET

— 960 Cardinality Binary Quadratic Programs (CBQPs) by Lima and Grossmann (2016)

Ir;i.n tTQz+q Q € R™" indefinite
s.t. Z xT; = M,
i=1

z;€{0,1}, i=1,...,n
Number of variables: n € {50, 75,100,200, 300,400}
Density of the quadratic matrix: p € {0.10,0,50,0.75,1.00}

Entries of () and ¢ randomly generated from uniform distributions over the intervals
[_1a 1]) [07 1]7 [_10(), 100]) [Oa 100]

M e {n[5,n[1.25}

— 315 Equality-constrained Integer Quadratic Programs (EIQPs) generated similar to Billionnet et al.
min 21 Qx +¢l'x

-I'ER”
s.t. Ax =0,

z;€{0,1}, i=1,...,n
With up to 400 variables

Problems available from ftp://ftp.merl.com/pub/raghunathan/MIQP-TestSet/*

Georgia Institute of Technology
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COMPARISON BETWEEN RELAXATIONS

* Eigenvalue relaxation (EIG)

* Generalized eigenvalue relaxation (GEIG)

* Eigenvalue relaxation in the nullspace of the equality constraints (EIGNS)
* Level-1 Reformulation Linearization Technique relaxation (RLT)

* Semidefinite programming relaxations:

(SDPd) (SDPda)
min (Q,X)+q'= min (Q,X)+¢'«
st. Ax=b, Cx<d, I<zx<u st. Az=b, Cxr<d, l<x<u
X -—zzl >0 X -—zzT >0
X Sujx; + iz —uil;, 1=1,...,n Xii Sux; +Lix; —uil;, i=1,...,n

(ATA X)-2(AT0) Tz +b"b=0

e Solvers:
— LP and QP relaxations: CPLEX 12.9 under GAMS
— SDP relaxations: SDPT3 4.0 under MATLAB
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COMPARISON BETWEEN RELAXATIONS

240 CBQP instances with p = 0.10

100+
________ /
L — B B /
1)
3
O 60
-
Yo
(@
)
C
§ 40
Q — EIG
o
—— GEIG
i EIGNS
201/, ———- RLT
........ SDPd
i —.— SDPda
0o 25 50 75 100

Root-node gap

Georgia Institute of Technology 28



COMPARISON BETWEEN RELAXATIONS

240 CBQP instances with p = 1.00

100-

80

o
o

40

Percent of models

207

0 25 50 75 100
Root-node gap
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COMPARISON BETWEEN RELAXATIONS

240 CBQP instances with p =0.10

B FIG BN RLT

[

o
[
\

|| GEIG SDPd
B EIGNS Bl SDPda

[
)
o

Geometric mean of CPU times [s]
S
u

-2 |
10 ] ] | | |
n

n=>50 n=75 n =100 n =200 n = 300 = 400
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COMPARISON BETWEEN RELAXATIONS

240 CBQP instances with p = 1.0

B FIG BN RLT
103! W GEIG SDPd

B EIGNS Bl SDPda

102

101

Geometric mean of CPU times [s]

- - _
_2_

10 ] ] ) )

n=>50 n=75 n=100 n =200 n = 300

JI-

= 400
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COMPARISON WITH OTHER SOLVERS

960 CBQP instances

100

80

o)
©

Percent of models

1 10 100 500 0 25 50 75 100
Time [s] Remaining gap at 500 seconds
ANTIGONE —— BARONS ---- CPLEX —-—- LINDOGLOBAL
—— BARONns ~ —— COUENNE - GUROBI —— SCIP
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COMPARISON WITH CPLEX

356 nontrivial CBQP and QSAP instances solved to global optimality by either BARONs or CPLEX

40 -

301

201

Percent of models

o =s= B == ...

BARONs BARONs BARONs BARONs Similar CPLEX CPLEX CPLEX CPLEX
>10X 5X to 10X 2Xto5X 1.1Xto 2X performance 1.1Xto 2X 2Xto 5X 5X to 10X >10X
faster faster faster faster faster faster faster faster
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COMPARISON WITH GUROBI

305 nontrivial CBQP and QSAP instances solved to global optimality by either BARONs or GUROBI

40

30

Percent of models
N
o

mum BN ..

BARONs BARONs BARONs BARONs Similar GUROBI GUROBI GUROBI GUROBI
>10X 5X to 10X 2Xto5X 1.1Xto 2X performance 1.1Xto 2X 2Xto 5X 5X to 10X >10X
faster faster faster faster faster faster faster faster
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COMPARISON TO QCR

60 50
= 40
i in
:
£ £ 30
630 kS
3 20
Y 20 £
& &
i 10
0 0 E—
BARON BARON BARON BARON BARON BARON BARON Similar  BARONgcr  BARONgcr
CPU time CPU time CPU time CPU time CPU time gap gap gaps gap gap
>100X 10X to 100X 5Xto10X  2Xto5X  1.1X to 2X >2X 1.1X to 2X 1.1X to 2X >2X
smaller smaller smaller smaller smaller smaller smaller smaller smaller
(a) CPU times (442 nontrivial instances). (b) Relative gaps (537 nontrivial instances).
[ [ [ [
* Quadratic convex reformulations for binary quadratic

programs (Billionnet et al., 2009, 2013)
— Tighter than eigenvalue relaxations at the root node

— Much slower to converge

Georgia Institute of Technology
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SPECTRAL RELAXATIONS

* Despite their simplicity, these relaxations provide tight bounds for many problems

e Constructed in the space of original problem variables, they are very inexpensive to
solve

e Equivalent to some particular SDPs

* Lead to very significant improvements in the performance of branch-and-bound
algorithms

e Useful for dense problems

Georgia Institute of Technology
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