# Spectral relaxations for global optimization of mixed-integer quadratic programs

#### **Nick Sahinidis**

Joint work with Carlos Nohra and Arvind Raghunathan





# **BARON'S RELAXATIONS**

- Nonlinear outer approximations of factorable functions
  - Ryoo and Sahinidis (1995)



- Tawarmalani and Sahinidis (2005)
- Some nonlinear relaxations
  - Khajavirad and Sahinidis (2018)
    - Original NLP becomes convex
  - Nohra, Raghunathan and Sahinidis (2021)
    - Original NLP does not become convex
- Dynamic relaxation selection
  - LP, NLP, MIP







This talk

## PROBLEM FORMULATION

We consider mixed-integer quadratic programs (MIQPs) of the form:

$$\min_{x} x^{T}Qx + q^{T}x$$
s.t.  $Ax = b$ 

$$Cx \le d$$

$$l \le x \le u$$

$$x_{i} \in \mathbb{Z}, \ \forall i \in I \subseteq \{1, \dots, n\}$$

where  $Q \in \mathbb{R}^{n \times n}$  is a symmetric matrix which may be indefinite and  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $C \in \mathbb{R}^{p \times n}$ ,  $d \in \mathbb{R}^p$ 

Inequalities handled but not exploited

## **BASIC RELAXATION APPROACHES**

Factorable programming relaxations (McCormick, 1976)

Introduce new variables  $X_{ij} = x_i x_j, \ i, j = 1, \dots, n$   $q_{ij} \neq 0$   $X_{ij} \geq u_i x_j + u_j x_i - u_i u_j$   $X_{ij} \geq l_i x_j + l_j x_i - l_i l_j$   $X_{ij} \leq u_i x_j + l_j x_i - u_i l_j$   $X_{ij} \leq l_i x_j + u_j x_i - l_i u_j$ 

$$X_{ij} \ge u_i x_j + u_j x_i - u_i u_j$$
 $X_{ij} \ge l_i x_j + l_j x_i - l_i l_j$ 
 $X_{ij} \le u_i x_j + l_j x_i - u_i l_j$ 
 $X_{ij} \le l_i x_j + u_j x_i - l_i u_j$ 

**McCormick inequalities** 

Reformulation Linearization Technique (RLT) relaxations (Sherali and Adams 1990, 1992)

Reformulation step: construct reformulated problem by adding redundant nonlinear constraints Linearization step: linearize reformulated problem by introducing new variables

Semidefinite programming relaxations (Shor, 1987)

Introduce symmetric matrix of new variables

$$X = xx^T \qquad \longrightarrow \qquad X - xx^T \geqslant 0$$

Semidefinite constraint

Loss of sparsity; quadratic increase in number of variables

## REFORMULATION-BASED APPROACHES

Eigenvalue reformulation (Rosen et al., 1987)

$$Q = U\Lambda U^T = \sum_{i=1}^n \lambda_i u_i u_i^T \qquad \qquad \lambda_i : i\text{-th eigenvalue of Q}$$
 
$$u_i : \text{eigenvector associated with the } i\text{-th eigenvalue of Q}$$

- Use eigendecomposition of the quadratic matrix to construct a convex quadratic relaxation
- Resulting relaxation yields very weak bounds
- Undominated d.c. decompositions of quadratic functions (Bomze and Locatelli, 2004)

$$\min_{x \in P} x^T Q x + q^T x = f(x) - g(x) \qquad f(x) = x^T (Q - B) x + q^T x \qquad g(x) = x^T B x$$

The matrix *B* is chosen such that  $B \ge 0$  and  $Q - B \ge 0$ 

An SDP-based algorithm is proposed in order to find B

- Quadratic convex reformulations for binary quadratic programs (Billionnet et al., 2009, 2013)
  - Reformulate original problem into another one whose continuous relaxation is convex
  - Perturbation parameters used to construct the reformulated problem obtained by solving certain SDPs

$$\min_{x} x^{T}Qx + q^{T}x$$
s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ ,  $x_{i} \in \mathbb{Z}$ ,  $\forall i \in I \subseteq \{1, ..., n\}$  (MIQP)

# Reformulated problem

$$\min_{x} \ x^{T}Qx + q^{T}x + \alpha_{e} \sum_{i=1}^{n} x_{i}^{2} - \alpha_{e} \sum_{i=1}^{n} x_{i}^{2} \longrightarrow \text{Relax using concave envelope}$$

$$\text{s.t. } Ax = b, \quad Cx \leq d, \quad l \leq x \leq u, \quad x_{i} \in \mathbb{Z}, \quad \forall i \in I \subseteq \{1, \dots, n\}$$

$$\text{where } \alpha_{e} \geq 0$$

$$\longrightarrow \text{Relax integrality conditions}$$

The concave envelope of  $x_i^2$  over  $[l_i, u_i]$  is given by the line  $(l_i + u_i)x_i - l_iu_i$ 



$$\min_{x} x^{T}Qx + q^{T}x$$
s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ ,  $x_{i} \in \mathbb{Z}$ ,  $\forall i \in I \subseteq \{1, ..., n\}$  (MIQP)

# Quadratic relaxation

$$\min_{x} x^{T} Q x + q^{T} x + \alpha_{e} \sum_{i=1}^{n} x_{i}^{2} - \alpha_{e} \sum_{i=1}^{n} ((l_{i} + u_{i}) x_{i} - l_{i} u_{i})$$
(EIG)

s.t. 
$$Ax = b$$
,  $Cx \le d$ ,  $l \le x \le u$ 

where  $\alpha_e \ge 0$ 

Original 
$$\min_{x} x^{T}Qx + q^{T}x$$
 (MIQP) s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ ,  $x_{i} \in \mathbb{Z}$ ,  $\forall i \in I \subseteq \{1, \dots, n\}$  Quadratic relaxation 
$$\min_{x} x^{T}(Q + \alpha_{e}I_{n})x + (q - \alpha_{e}(l + u))^{T}x + \alpha_{e}l^{T}u$$
 (EIG) s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$  where  $\alpha_{e} \ge 0$ 

To ensure convexity of this relaxation, we must choose  $\alpha_e$  such that  $Q + \alpha_e I_n \ge 0$ 

This is equivalent to choosing  $\alpha_e \ge -\min(0, \lambda_{\min}(Q))$ 

The tightest convex relaxation of form (EIG) for which  $Q + \alpha_e I_n \ge 0$  is obtained by setting  $\alpha_e = -\min(0, \lambda_{\min}(Q))$ 

Under this approach, we convexify the objective function of (MIQP) by perturbing the diagonal elements of the matrix Q

Original min 
$$x^TQx + q^Tx$$
 min  $x^TQx + q^Tx$  s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ ,  $x_i \in \mathbb{Z}$ ,  $\forall i \in I \subseteq \{1, \dots, n\}$ 

Quadratic relaxation 
$$\begin{aligned} & \underset{x}{\min} & x^TQx + q^Tx \\ & \text{s.t. } Ax = b, & Cx \le d, & l \le x \le u, \\ & \text{s.t. } Ax = b, & Cx \le d, & l \le x \le u \end{aligned}$$

$$\text{where } \alpha_e = -\min(0, \lambda_{\min}(Q))$$

#### Remarks:

- Hammer and Rubin (1970) is one of the earliest works considering convexification methods based on the smallest eigenvalue of the quadratic matrix
- The construction of this relaxation can be seen as an application of d.c. programming methods (Tuy, 1995) or alphaBB techniques (Androulakis et al., 1995)
- Despite its simplicity, the eigenvalue relaxation can provide significantly tight bounds

#### Proposition 1:

 $\mu_{\text{EIG}} \coloneqq \min_{x} \ x^{T} Q_{\alpha_{e}} x + q_{\alpha_{e}}^{T} x + k_{\alpha_{e}} \quad \text{(EIG)}$   $\text{s.t.} \ Ax = b, \ Cx \le d, \ l \le x \le u$   $\text{where } Q_{\alpha_{e}} = Q + \alpha_{e} I_{n}$   $(\text{SDP\_EIG}) \coloneqq \min_{x, X} \ \langle Q, X \rangle + q^{T} x \quad \text{(SDP\_EIG)}$   $\text{s.t.} \ Ax = b, \ Cx \le d, \ l \le x \le u$   $X - xx^{T} \ge 0$ 

 $\langle I_n, X \rangle - (l+u)^T x + l^T u = 0$ 

Assume that the matrix Q is indefinite. Let  $\alpha_e = -\lambda_{\min}(Q)$ . Then, we have:

 $q_{\alpha_e} = q - \alpha_e(l+u)$ 

 $k_{\alpha_e} = \alpha_e l^T u$ 

Original problem  $\begin{aligned} & \underset{x}{\min} \ x^TQx + q^Tx \\ & \text{s.t.} \ Ax = b, \quad Cx \leq d, \quad l \leq x \leq u, \quad x_i \in \mathbb{Z}, \ \forall i \in I \subseteq \{1, \dots, n\} \end{aligned}$  (MIQP)  $\begin{aligned} & \underset{x}{\text{Reformulated}} \ & \underset{x}{\min} \ x^TQx + q^Tx + \alpha_g \sum_{i=1}^n x_i^2 - \alpha_g \sum_{i=1}^n x_i^2 + \alpha_g \|Ax - b\|^2 \\ & \text{problem} \end{aligned}$  Use the same perturbation parameter where  $\alpha_g \geq 0$  for the  $x_i^2$  terms and the term  $\|Ax - b\|^2$ 

where  $\alpha_g \geq 0$ 

Original min 
$$x^TQx + q^Tx$$
 (MIQP) s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ ,  $x_i \in \mathbb{Z}$ ,  $\forall i \in I \subseteq \{1, \dots, n\}$  Quadratic relaxation 
$$\begin{aligned} & \underset{x}{\min} & x^TQx + q^Tx \\ & \text{s.t. } Ax = b, & Cx \le d, & l \le x \le u, & x_i \in \mathbb{Z}, & \forall i \in I \subseteq \{1, \dots, n\} \end{aligned}$$
 (GEIG) s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$  where  $\alpha_g \ge 0$ 

To ensure convexity of this relaxation, we must choose  $\alpha_g$  such that  $Q + \alpha_g (I + A^T A) \ge 0$ 

Proposition 2

Let 
$$\alpha_g \ge -\min(0, \lambda_{\min}(Q, I_n + A^T A))$$
. Then, (GEIG) is a convex quadratic program.

The tightest convex relaxation of form (GEIG) for which  $Q + \alpha_g (I + A^T A) \ge 0$  is obtained by setting  $\alpha_g = -\min(0, \lambda_{\min}(Q, I_n + A^T A))$ 

#### Proposition 3:

Consider the eigenvalue relaxation and the generalized eigenvalue relaxation

$$\mu_{\text{EIG}} \coloneqq \min_{x} \ x^{T} Q_{\alpha_{e}} x + q_{\alpha_{e}}^{T} x + k_{\alpha_{e}} \quad \text{(EIG)}$$

$$\text{s.t.} \ Ax = b, \ Cx \le d, \ l \le x \le u$$

$$\text{where } Q_{\alpha_{e}} = Q + \alpha_{e} I_{n}$$

$$q_{\alpha_{e}} = q - \alpha_{e} (l + u)$$

$$k_{\alpha_{e}} = \alpha_{e} l^{T} u$$

$$\mu_{\text{GEIG}} \coloneqq \min_{x} \ x^{T} Q_{\alpha_{g}} x + q_{\alpha_{g}}^{T} x + k_{\alpha_{g}} \quad \text{(GEIG)}$$

$$\text{s.t.} \ Ax = b, \ Cx \le d, \ l \le x \le u$$

$$\text{where } Q_{\alpha_{g}} = Q + \alpha_{g} \left( I + A^{T} A \right)$$

$$q_{\alpha_{g}} = q - \alpha_{g} \left( 2A^{T} b + l + u \right)$$

$$k_{\alpha_{g}} = \alpha_{g} \left( l^{T} u + b^{T} b \right)$$

Let  $\alpha_e = -\min(0, \lambda_{\min}(Q))$  in (EIG) and  $\alpha_g = -\min(0, \lambda_{\min}(Q, I_n + A^T A))$  in (GEIG). Then, the **generalized** eigenvalue relaxation is at least as tight as the eigenvalue relaxation, i.e.,  $\mu_{\text{GEIG}} \ge \mu_{\text{EIG}}$ .

#### Proposition 4:

Assume that the matrix 
$$Q$$
 is indefinite. Let  $\alpha_g = -\lambda_{\min}(Q, I_n + A^T A)$ . Then, we have: 
$$\mu_{\text{GEIG}} \coloneqq \min_x \ x^T Q_{\alpha_g} x + q_{\alpha_g}^T x + k_{\alpha_g} \ (\text{GEIG}) \qquad \mu_{\text{SDP\_GEIG}} \coloneqq \min_{x,X} \ \langle Q, X \rangle + q^T x \qquad (\text{SDP\_GEIG})$$
 s.t.  $Ax = b, \quad Cx \le d, \quad l \le x \le u$  where  $Q_{\alpha_g} = Q + \alpha_g \left( I + A^T A \right) \qquad \qquad x - xx^T \ge 0$  
$$q_{\alpha_g} = q - \alpha_g \left( 2A^T b + l + u \right) \qquad \qquad \langle I_n + A^T A, X \rangle - \left( l + u + 2A^T b \right)^T x + l^T u + b^T b = 0$$
 
$$\langle I_n + A^T A, X \rangle - \left( l + u + 2A^T b \right)^T x + l^T u + b^T b = 0$$

Original 
$$\min_{x} x^{T}Qx + q^{T}x$$
 (MIQP) s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ ,  $x_{i} \in \mathbb{Z}$ ,  $\forall i \in I \subseteq \{1, \dots, n\}$  
$$\min_{x} x^{T} (Q + \alpha_{z}I_{n}) x + (q - \alpha_{z}(l + u))^{T}x + \alpha_{z}l^{T}u$$
 (EIGNS) s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$  where  $\alpha_{z} \ge 0$ 

This relaxation has the same form as the eigenvalue relaxation, but in this case  $\alpha_z$  is determined by making use of the nullspace of A

#### Proposition 5

Denote by Z an orthonormal basis for the nullspace of the matrix A. Let  $\alpha_z \ge -\min(0, \lambda_{\min}(Z^T Q Z))$ . Then, (EIGNS) is a **convex quadratic program**.

The tightest convex relaxation of form (EIGNS) is obtained by setting  $\alpha_z = -\min(0, \lambda_{\min}(Z^T Q Z))$ 

#### Proposition 6:

Consider the generalized eigenvalue relaxation and the eigenvalue relaxation in the nullspace of A

$$\mu_{\text{GEIG}} \coloneqq \min_{x} \ x^{T} Q_{\alpha_{g}} x + q_{\alpha_{g}}^{T} x + k_{\alpha_{g}} \qquad \text{(EIGNS)}$$

$$\text{s.t.} \ Ax = b, \quad Cx \leq d, \quad l \leq x \leq u$$

$$\text{where } Q_{\alpha_{g}} = Q + \alpha_{g} \left( I + A^{T} A \right)$$

$$q_{\alpha_{g}} = q - \alpha_{g} \left( 2A^{T} b + l + u \right)$$

$$k_{\alpha_{g}} = \alpha_{g} \left( l^{T} u + b^{T} b \right)$$

$$\mu_{\text{EIGNS}} \coloneqq \min_{x} \ x^{T} Q_{\alpha_{z}} x + q_{\alpha_{z}}^{T} x + k_{\alpha_{z}} \quad \text{(EIGNS)}$$

$$\text{s.t.} \ Ax = b, \quad Cx \leq d, \quad l \leq x \leq u$$

$$\text{where } Q_{\alpha_{z}} = Q + \alpha_{z} I_{n}$$

$$q_{\alpha_{z}} = q - \alpha_{z} (l + u)$$

$$k_{\alpha_{z}} = \alpha_{z} l^{T} u$$

Let  $\alpha_g = -\min(0, \lambda_{\min}(Q, I_n + A^T A))$  in (GEIG) and  $\alpha_z = -\min(0, \lambda_{\min}(Z^T Q Z))$  in (EIGNS). Then, the **eigenvalue** relaxation in the nullspace of A is at least as tight as the generalized eigenvalue relaxation, i.e.,  $\mu_{\text{EIGNS}} \ge \mu_{\text{GEIG}}$ .

#### Proposition 7:

Assume that the matrix  $Z^TQZ$  is indefinite. Let  $\alpha_z = -\lambda_{\min}(Z^TQZ)$ . Then, we have:  $\mu_{\text{EIGNS}} \coloneqq \min_x \ x^TQ_{\alpha_z}x + q_{\alpha_z}^Tx + k_{\alpha_z} \ \text{(EIGNS)}$   $\text{s.t.} \ Ax = b, \ Cx \le d, \ l \le x \le u$   $\text{where } Q_{\alpha_z} = Q + \alpha_z I_n$   $q_{\alpha_z} = q - \alpha_z (l + u)$   $q_{\alpha_z} = q - \alpha_z (l + u)$   $q_{\alpha_z} = \alpha_z l^T u$   $(SDP\_EIGNS)$  s.t.  $Ax = b, \ Cx \le d, \ l \le x \le u$   $X - xx^T \ge 0$   $(I_n, X) - (l + u)^T x + l^T u = 0$   $(A^TA, X) - (2A^Tb)^T x + b^T b = 0$ 

# DETERMINING $Z^TQZ$

To determine  $Z^TQZ$  we need to:

- 1. Calculate the nullspace basis Z. This can be done through a QR factorization which requires  $\mathcal{O}(n^3)$  FLOPS.
- 2. Compute  $Z^TQZ$ , which is the projection of Q onto the nullspace of A. This also requires  $\mathcal{O}(n^3)$  FLOPS.

#### Question:

Can we obtain a good approximation of  $\lambda_{\min}(Z^TQZ)$  without explicitly calculating Z?

#### Proposition 8

Let  $\delta$  be a real scalar. Then, the following hold:

- (a) If the matrix Q is indefinite,  $\lambda_{\min}(Q, I_n + \delta A^T A)$  is a strictly increasing function of  $\delta$  for  $\delta \geq 1$ .
- (b)  $\lim_{\delta \to \infty} \lambda_{\min}(Q, I_n + \delta A^T A) = \min(0, \lambda_{\min}(Z^T Q Z)).$

This proposition implies that we can obtain a good approximation of the bound given by the eigenvalue relaxation in the nullspace of the equality constraints

$$\min_{x} x^{T} (Q + \alpha_{z} I_{n}) x + (q - \alpha_{z} (l + u))^{T} x + \alpha_{z} l^{T} u$$

$$\text{s.t. } Ax = b, \quad Cx \leq d, \quad l \leq x \leq u$$

$$\text{where } \alpha_{z} = -\min(0, \lambda_{\min}(Z^{T} QZ))$$
(EIGNS)

by solving the following quadratic program

$$\min_{x} x^{T}Qx + q^{T}x + \alpha(\delta)(x^{T}x - (l+u)^{T}x + l^{T}u) + \alpha(\delta) \cdot \delta \cdot ||Ax - b||^{2}$$
s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ 

where  $\alpha(\delta) = -\lambda_{\min}(Q, I_{n} + \delta A^{T}A)$ 

This term vanishes for any feasible  $x$ 

We can drop this term and still have a convex quadratic relaxation

for a sufficiently large value of  $\delta$ 

# **SPECTRAL RELAXATIONS**

$$\mu_{\text{EIG}} \coloneqq \min_{x} \ x^{T} Q_{\alpha_{e}} x + q_{\alpha_{e}}^{T} x + k_{\alpha_{e}} \quad \text{(EIG)}$$

$$\text{s.t. } Ax = b, \quad Cx \le d, \quad l \le x \le u$$

$$\text{s.t. } Ax = b, \quad Cx \le d, \quad l \le x \le u$$

$$\text{where } Q_{\alpha_{e}} = Q + \alpha_{e} I_{n}$$

$$q_{\alpha_{e}} = q - \alpha_{e} (l + u)$$

$$k_{\alpha_{e}} = \alpha_{e} l^{T} u$$

$$\alpha_{e} = -\lambda_{\min}(Q)$$

$$(\text{SDP\_EIG})$$

$$\text{s.t. } Ax = b, \quad Cx \le d, \quad l \le x \le u$$

$$(X - xx^{T} \ge 0)$$

$$(I_{n}, X) - (l + u)^{T} x + l^{T} u = 0$$

$$\mu_{\text{GEIG}} \coloneqq \min_{x} x^{T} Q_{\alpha_{g}} x + q_{\alpha_{g}}^{T} x + k_{\alpha_{g}} \text{ (GEIG)}$$

$$\text{s.t. } Ax = b, \quad Cx \leq d, \quad l \leq x \leq u$$

$$\text{where } Q_{\alpha_{g}} = Q + \alpha_{g} \left( I + A^{T} A \right)$$

$$q_{\alpha_{g}} = q - \alpha_{g} \left( 2A^{T} b + l + u \right)$$

$$k_{\alpha_{g}} = \alpha_{g} \left( l^{T} u + b^{T} b \right)$$

$$\alpha_{g} = -\lambda_{\min}(Q, I_{n} + A^{T} A)$$

$$(\text{SDP\_GEIG}} \coloneqq \min_{x, X} \langle Q, X \rangle + q^{T} x$$

$$\text{s.t. } Ax = b, \quad Cx \leq d, \quad l \leq x \leq u$$

$$X - xx^{T} \geq 0$$

$$\langle I_{n} + A^{T} A, X \rangle - \left( l + u + 2A^{T} b \right)^{T} x + l^{T} u + b^{T} b = 0$$

$$\mu_{\text{EIGNS}} \coloneqq \min_{x} x^{T} Q_{\alpha_{z}} x + q_{\alpha_{z}}^{T} x + k_{\alpha_{z}} \text{ (EIGNS)}$$

$$\text{s.t. } Ax = b, \quad Cx \le d, \quad l \le x \le u$$

$$\text{where } Q_{\alpha_{z}} = Q + \alpha_{z} I_{n}$$

$$q_{\alpha_{z}} = q - \alpha_{z} (l + u)$$

$$k_{\alpha_{z}} = \alpha_{z} l^{T} u$$

$$\alpha_{z} = -\lambda_{\min}(Z^{T} QZ)$$

$$(SDP\_EIGNS)$$

$$\text{s.t. } Ax = b, \quad Cx \le d, \quad l \le x \le u$$

$$X - xx^{T} \ge 0$$

$$(I_{n}, X) - (l + u)^{T} x + l^{T} u = 0$$

$$(A^{T} A, X) - (2A^{T} b)^{T} x + b^{T} b = 0$$

 $\mu_{\text{EIGNS}} \ge \mu_{\text{GEIG}} \ge \mu_{\text{EIG}}$ 

## IMPLEMENTATION IN BARON

- Incorporated spectral relaxations in the global optimization solver BARON
  - BARON's default portfolio of relaxations:
    - LP relaxations
    - Convex NLP relaxations
    - MILP relaxations
  - Expanded BARON's portfolio of relaxations by adding the spectral relaxations
    - New QP relaxations invoked at nonconvex nodes
    - Eigenvalue and generalized eigenvalue problems solved with LAPACK
    - Convex QP relaxations solved with CPLEX
  - Implemented dynamic relaxation selection strategy
    - Switches between polyhedral and quadratic relaxations throughout the tree based on their relative strength (similar to Khajavirad and Sahinidis, 2018)
- Developed spectral branching rule
  - Increase the impact of branching decisions on the bounds given by the spectral relaxations

## SPECTRAL BRANCHING

$$\min_{x} x^{T}Qx + q^{T}x 
\text{s.t. } x \in \{0,1\}^{n}$$

$$Q = \begin{bmatrix} 0 & 26 & 44 & -73 \\ 26 & 0 & -45 & 11 \\ 44 & -45 & 0 & 84 \\ -73 & 11 & 84 & 0 \end{bmatrix} \qquad q = \begin{bmatrix} -119 \\ 27 \\ -187 \\ -2 \end{bmatrix} \qquad \min_{x} x^{T}Qx + q^{T}x + \alpha_{e} \sum_{i=1}^{n} (x_{i}^{2} - x_{i}) \text{ (EIG)}$$

$$\text{s.t. } x \in [0,1]^{n}$$

$$\text{where } \alpha_{e} = -\lambda_{\min}(Q)$$

Root node:  $\lambda_{\min}(Q) = -149.8$ 

**Set of branching candidates:**  $\mathcal{B} = \{1, 2, 3, 4\}$ 

Branch on the variable that leads to the largest increase in the smallest eigenvalue of the quadratic matrix

Branch on  $x_1$ :

Branch on  $x_2$ :

Branch on  $x_3$ :

Branch on  $x_4$ :

$$\hat{Q}_1 = \begin{bmatrix} 0 & -45 & 11 \\ -45 & 0 & 84 \\ 11 & 84 & 0 \end{bmatrix} \qquad \hat{Q}_2 = \begin{bmatrix} 0 & 44 & -73 \\ 44 & 0 & 84 \\ -73 & 84 & 0 \end{bmatrix} \qquad \hat{Q}_3 = \begin{bmatrix} 0 & 26 & -73 \\ 26 & 0 & 11 \\ -73 & 11 & 0 \end{bmatrix} \qquad \hat{Q}_4 = \begin{bmatrix} 0 & 26 & 44 \\ 26 & 0 & -45 \\ 44 & -45 & 0 \end{bmatrix}$$

$$\hat{Q}_2 = \begin{bmatrix} 0 & 44 & -73 \\ 44 & 0 & 84 \\ -73 & 84 & 0 \end{bmatrix}$$

$$\hat{Q}_3 = \begin{bmatrix} 0 & 26 & -73 \\ 26 & 0 & 11 \\ -73 & 11 & 0 \end{bmatrix}$$

$$\hat{Q}_4 = \begin{bmatrix} 0 & 26 & 44 \\ 26 & 0 & -45 \\ 44 & -45 & 0 \end{bmatrix}$$

Spectral branching with complete enumeration (requires the solution of  $|\mathcal{B}|$  eigenvalue problems)

$$\lambda_{\min}(\hat{Q_1}) = -100.2$$

$$\lambda_{\min}(\hat{Q_2})$$
 =  $-135.3$ 

$$\lambda_{\min}(\hat{Q_3})$$
 =  $-81.5$ 

$$\lambda_{\min}(\hat{Q_4})$$
 =  $-77.3$ 

Approximation 1: Use Gershgorin's Circle Theorem (GCT) to obtain a lower bound estimate for  $\lambda_{\min}(\hat{Q}_i)$ 

$$\underline{\lambda}_{\min}^{GCT}(\hat{Q}_1) = -129$$

$$\underline{\lambda}_{\min}^{GCT}(\hat{Q}_2) = -157$$
  $\underline{\lambda}_{\min}^{GCT}(\hat{Q}_3) = -99$ 

$$\underline{\lambda}_{\min}^{GCT}(\hat{Q}_3) = -99$$

$$\underline{\lambda}_{\min}^{ ext{GCT}}(\hat{Q}_4)$$
 =  $-89$ 

## SPECTRAL BRANCHING

$$\min_{x} x^{T} Q x + q^{T} x 
\text{s.t. } x \in \{0,1\}^{n}$$

$$Q = \begin{bmatrix} 0 & 26 & 44 & -73 \\ 26 & 0 & -45 & 11 \\ 44 & -45 & 0 & 84 \\ -73 & 11 & 84 & 0 \end{bmatrix}$$

$$q = \begin{bmatrix} -119 \\ 27 \\ -187 \\ -2 \end{bmatrix}$$

$$\min_{x} x^{T} Q x + q^{T} x + \alpha_{e} \sum_{i=1}^{n} (x_{i}^{2} - x_{i}) \text{ (EIG)}$$

$$\text{s.t. } x \in [0,1]^{n}$$

$$\text{where } \alpha_{e} = -\lambda_{\min}(Q)$$

Root node:  $\lambda_{\min}(Q) = -149.8$ 

**Set of branching candidates:**  $\mathcal{B} = \{1, 2, 3, 4\}$ 

Branch on the variable that leads to the largest increase in the smallest eigenvalue of the quadratic matrix

Branch on  $x_1$ :

Branch on  $x_2$ :

Branch on  $x_3$ :

Branch on  $x_4$ :

$$\hat{Q}_1 = \begin{bmatrix} 0 & -45 & 11 \\ -45 & 0 & 84 \\ 11 & 84 & 0 \end{bmatrix} \qquad \hat{Q}_2 = \begin{bmatrix} 0 & 44 & -73 \\ 44 & 0 & 84 \\ -73 & 84 & 0 \end{bmatrix} \qquad \hat{Q}_3 = \begin{bmatrix} 0 & 26 & -73 \\ 26 & 0 & 11 \\ -73 & 11 & 0 \end{bmatrix} \qquad \hat{Q}_4 = \begin{bmatrix} 0 & 26 & 44 \\ 26 & 0 & -45 \\ 44 & -45 & 0 \end{bmatrix}$$

$$\hat{Q}_2 = \begin{bmatrix} 0 & 44 & -73 \\ 44 & 0 & 84 \\ -73 & 84 & 0 \end{bmatrix}$$

$$\hat{Q}_3 = \begin{bmatrix} 0 & 26 & -73 \\ 26 & 0 & 11 \\ -73 & 11 & 0 \end{bmatrix}$$

$$\hat{Q}_4 = \begin{bmatrix} 0 & 26 & 44 \\ 26 & 0 & -45 \\ 44 & -45 & 0 \end{bmatrix}$$

Spectral branching with complete enumeration (requires the solution of  $|\mathcal{B}|$  eigenvalue problems)

$$\lambda_{\min}(\hat{Q_1}) = -100.2$$

$$\lambda_{\min}(\hat{Q}_2) = -135.3$$
  $\lambda_{\min}(\hat{Q}_3) = -81.5$ 

$$\lambda_{\min}(\hat{Q_3}) = -81.5$$

$$\lambda_{\min}(\hat{Q_4})$$
 =  $-77.3$ 

Approximation 2: Let v be the eigenvector corresponding to  $\lambda_{\min}(Q)$ 

Select as branching variable the one corresponding to the entry of v with the largest magnitude

The eigenvector corresponding to  $\lambda_{\min}(Q)$  is given by  $v = \begin{bmatrix} -0.30 \\ -0.56 \end{bmatrix}$ 

## **TEST SET**

960 Cardinality Binary Quadratic Programs (CBQPs) by Lima and Grossmann (2016)

$$\min_{x} \quad x^{T}Qx + q^{T}x \qquad \qquad Q \in \mathbb{R}^{n \times n} \text{ indefinite}$$
  
s.t. 
$$\sum_{i=1}^{n} x_{i} = M,$$
  
$$x_{i} \in \{0, 1\}, \ i = 1, \dots, n$$

Number of variables:  $n \in \{50, 75, 100, 200, 300, 400\}$ 

 $M \in \{n/5, n/1.25\}$ 

Density of the quadratic matrix:  $\rho \in \{0.10, 0, 50, 0.75, 1.00\}$ 

Entries of Q and q randomly generated from uniform distributions over the intervals [-1,1],[0,1],[-100,100],[0,100]

- 315 Equality-constrained Integer Quadratic Programs (EIQPs) generated similar to Billionnet et al.

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} \quad x^T Q x + q^T x$$

$$\text{s.t.} \quad A x = b,$$

$$x_i \in \{0, 1\}, \ i = 1, \dots, n$$

With up to 400 variables

Problems available from ftp://ftp.merl.com/pub/raghunathan/MIQP-TestSet/\*

- Eigenvalue relaxation (EIG)
- Generalized eigenvalue relaxation (GEIG)
- Eigenvalue relaxation in the nullspace of the equality constraints (EIGNS)
- Level-1 Reformulation Linearization Technique relaxation (RLT)
- Semidefinite programming relaxations:

(SDPd)

$$\min_{x,X} \langle Q, X \rangle + q^T x$$
s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ 

$$X - xx^T \ge 0$$

$$X_{ii} \le u_i x_i + l_i x_i - u_i l_i, i = 1, \dots, n$$

(SDPda)

$$\min_{x,X} \langle Q, X \rangle + q^T x$$
s.t.  $Ax = b$ ,  $Cx \le d$ ,  $l \le x \le u$ 

$$X - xx^T \ge 0$$

$$X_{ii} \le u_i x_i + l_i x_i - u_i l_i, i = 1, \dots, n$$

$$\langle A^T A, X \rangle - 2(A^T b)^T x + b^T b = 0$$

- Solvers:
  - LP and QP relaxations: CPLEX 12.9 under GAMS
  - SDP relaxations: SDPT3 4.0 under MATLAB









240 CBQP instances with  $\rho = 0.10$ 



240 CBQP instances with  $\rho = 1.0$ 



## **COMPARISON WITH OTHER SOLVERS**



## **COMPARISON WITH CPLEX**

356 nontrivial CBQP and QSAP instances solved to global optimality by either BARONs or CPLEX



## **COMPARISON WITH GUROBI**

305 nontrivial CBQP and QSAP instances solved to global optimality by either BARONs or GUROBI



# **COMPARISON TO QCR**



- Quadratic convex reformulations for binary quadratic programs (Billionnet et al., 2009, 2013)
  - Tighter than eigenvalue relaxations at the root node
  - Much slower to converge

## **SPECTRAL RELAXATIONS**

- Despite their simplicity, these relaxations provide tight bounds for many problems
- Constructed in the space of original problem variables, they are very inexpensive to solve
- Equivalent to some particular SDPs
- Lead to very significant improvements in the performance of branch-and-bound algorithms
- Useful for dense problems