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Polynomial optimization on the binary cube

We consider the problem of computing:

fmin := min
x∈Bn

f(x),

where
I f ∈ R[x] is a polynomial of degree d.
I Bn := {0, 1}n ⊆ Rn is the boolean hypercube.

Example (MaxCut)

For the complete graph Kn with edge-weights wij ≥ 0, we have:

MaxCut(w) = max
x∈Bn

∑
1≤i<j≤n

wij(xi − xj)2.

Example (StableSet)

The stability number of a graph G = (V,E) can be computed as:

Stab(G) = max
x∈B|V |

∑
i∈V

xi −
∑
{i,j}∈E

xixj .

Any binary polynomial optimization problem with linear constraints can be
reformulated as an unconstrained binary optimization problem.
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Semidefinite hierarchies for polynomial optimization

I (Binary) polynomial optimization is generally intractable

I This motivates the search for efficient bounds on the optimum

I Many such bounds have been proposed based on lift-and-project methods

I Today: two semidefinite hierarchies due to Lasserre
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The outer Lasserre hierachy (sum-of-squares hierarchy)

Observation
We can rewrite:

fmin = max{λ ∈ R : f − λ ≥ 0 on Bn}

I The nonnegativity condition can be relaxed to a sum-of-squares condition:

max{λ ∈ R : f − λ is a sum-of-squares on Bn},

meaning f(x)− λ =
∑
i p

2
i (x) for all x ∈ Bn for certain pi ∈ R[x]

I We can then put a bound on the degree of the pi:

f(r) = max{λ ∈ R : f − λ is a sum-of-squares of degree ≤ 2r on Bn},

meaning f(x)− λ =
∑
i p

2
i (x) for all x ∈ Bn for certain pi ∈ R[x] of

degree at most r
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The outer Lasserre hierachy (sum-of-squares hierarchy)

Definition (Lasserre, 2001)

For r ∈ N, define:

f(r) = max{λ ∈ R : f − λ is a sum-of-squares of degree ≤ 2r on Bn}

I f(r) ≤ f(r+1) ≤ fmin

I For fixed r, f(r) can be computed efficiently using semidefinite
programming

I There is a one-to-one correspondence between semidefinite matrices and
sum-of-squares polynomials:

p(x) is a sum-of-squares ⇐⇒ ∃M � 0 with p(x) = [x]>M [x],

where [x] = (xα)α is the vector of monomials up to degree deg(p)/2
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The inner (measure-based) Lasserre hierachy

Observation
We can rewrite:

fmin = min
ν

{∫
Bn

fdν :

∫
Bn

dν = 1

}

Definition (Lasserre, 2010)

Let µ be the uniform measure on Bn. For r ∈ N, define:

f (r) = min
s∈Σr [x]

{∫
Bn

f · sdµ :

∫
Bn

sdµ = 1

}

I f (r) ≥ f (r+1) ≥ fmin

I For fixed r, f (r) can be computed efficiently using SDP

I In principle we could choose a different reference measure µ.
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Summary

We have the hierarchies:

(outer) f(r) = max{λ ∈ R : f − λ is sos of degree ≤ 2r on Bn}

(inner) f (r) = min
s∈Σr [x]

{∫
Bn

f · sdµ :

∫
Bn

sdµ = 1

}
satisfying:

f(r) ≤ fmin ≤ f (r) ≤ fmax

Question
What can be said about the quality of these hierarchies? That is, can we
bound:

fmin − f(r)

‖f‖∞
and

f (r) − fmin

‖f‖∞
?

(here, ‖f‖∞ := maxx∈Bn |f(x)|)
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Some broader context

Both hierarchies can be defined more generally for polynomial optimization
over sets K ⊆ Rn other than the cube. Depending on K, their quality has
been investigated:

(inner)
f (r) − fmin

‖f‖∞
=


O(1/r2) if K = [−1, 1]n (de Klerk, Laurent)

O(1/r2) if K = Sn−1 (de Klerk, Laurent)

O(1/r2) if K = Bn,∆n, ‘nice’ (S., Laurent)

O(log2 r/r2) for ‘general’ K (S., Laurent)

(outer)
fmin − f(r)

‖f‖∞
=


O(1/ log(r/c)1/c) if K ‘compact’ (Nie, Schweighofer)

O(1/r) if K = Sn−1 (Doherty, Wehner)

O(1/r2) if K = Sn−1 (Fang, Fawzi)

Note: The inner hierarchy is much better understood than the outer hierarchy
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Back to the binary cube

(outer) f(r) = max{λ ∈ R : f − λ is sos of degree ≤ 2r on Bn}

(inner) f (r) = min
s∈Σr [x]

{∫
Bn

f · sdµ :

∫
Bn

sdµ = 1

}

Known results

I Finite convergence for the outer hierachy:

f(r) = fmin when r ≥ n+ d− 1

2
≈ 1

2
n

[Fawzi, Saunderson, Parrilo 2016 (d = 2)] [Sakaue et al. 2017 (d > 2)]

I Finite convergence for the inner hierachy:

f (r) = fmin when r ≥ n

I But, nothing is known when the bounds are not exact
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Main new results

Theorem (Main result on the outer hierachy)

Let f ∈ R[x]d. Let ξnr+1 be the least root of the degree r + 1 Krawtchouk
polynomial (with parameter n). Then for any n and r ≤ 1

2
n large enough, we

have:
fmin − f(r)

‖f‖∞
≤ Cd · (ξnr+1/n)

Theorem (Main result on the inner hierachy)

For any n and r ≤ 1
2
n, we have:

f (r) − fmin

‖f‖∞
≤ 1

2
Cd · (ξnr+1/n)
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Main new results

Theorem (Levenshtein)

For t ∈ [0, 1/2], write:

ϕ(t) = 1/2−
√
t(1− t).

Then the least root ξnr of the degree r + 1 Krawtchouk polynomial satisfies:

ξnr /n ≤ ϕ(r/n) + c · (r/n)−1/6 · n−2/3

I So, roughly:
fmin − f(r)

‖f‖∞
/ ϕ(r/n)
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Key steps of the proof for the outer hierarchy

Observation
We may assume for the proof that fmin = f(0) = 0 and ‖f‖∞ = 1.

Goal: Show that there exists a small λ > 0 such that f + λ is a sum-of-squares
on Bn of degree at most 2r.

1. Use the polynomial kernel technique to produce sum-of-squares
representations [Fang, Fawzi 2020]

2. Perform a symmetry reduction using classical Fourier analysis on Bn

3. Link the reduced problem to an analysis of the inner hierarchy in a
univariate setting

4. Exploit a known connection between the inner hierarchy and extremal
roots of orthogonal polynomials (Krawtchouk)

Our result for the inner hierarchy can be extrapolated from steps 3 and 4.

12 / 16



Step 1: The polynomial kernel technique (Fang, Fawzi 2020)

Goal: Find a sum-of-squares representation of f + λ for some small λ > 0.

I Consider a polynomial kernel of the form:

K(x, y) := q2(dham(x, y)) (x, y ∈ Bn),

with q ∈ R[t]r a univariate polynomial to be chosen later

I The kernel K induces a linear operator on R[x] by:

Kp(x) :=

∫
Bn

p(y)K(x, y)dµ(y) =
1

2n

∑
y∈Bn

p(y)K(x, y)

I When p ≥ 0 on Bn, then Kp is sos of degree ≤ 2r on Bn (!)

I If we choose λ big enough s.t. K−1(f + λ) ≥ 0 on Bn, we find that

f + λ = KK−1(f + λ)︸ ︷︷ ︸
≥0

is sos of degree ≤ 2r on Bn

I This immediately implies fmin − f(r) ≤ λ
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Step 2, 3 and 4:

Problem: How do we ensure that K−1(f + λ) ≥ 0 on Bn?

I We want the eigenvalues of K to be as close as possible to 1 (so that
K ≈ Id).

2. If K(x, y) = q2(d(x, y)), then the eigenvalues λi of K are given by the
decomposition:

q2(t) =
2r∑
i=0

λiKi(t) where Ki is the Krawtchouk polynomial

3. Selecting the univariate polynomial q so that the λi are as close as
possible to 1 corresponds to a univariate instance of the inner hierarchy

4. In the univariate case, the inner hierarchy is well understood, and the
behaviour can be described using orthogonal polynomials
[de Klerk, Laurent 2020]
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Concluding remarks

I We have shown a guarantee on the outer hierarchy fmin − f(r) using a
connection to (a special case of) the inner hierachy

I The treatment of this special case can be extended to obtain our result on
the inner hierarchy

I As far as we know, this is the first analysis in the setting r < n+d−1
2

I But, our results apply only in the setting r ≈ t · n. In particular they give
no information for fixed r ∈ N

I Open question: is it possible to add (linear) constraints?
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