Sum-of-squares hierarchies for binary polynomial optimization
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Polynomial optimization on the binary cube

We consider the problem of computing:

Jamin = min f(z),
where
» f € Rz] is a polynomial of degree d.
> B" :={0,1}" C R" is the boolean hypercube.
Example (MaxCur)

For the complete graph K, with edge-weights w;; > 0, we have:
MAXCuT(w) = max Z wij(x; — ;)%

TEB™
1<i<j<n

Example (STABLESET)
The stability number of a graph G = (V, E) can be computed as:

STAB(G) = max i — E il
\4
w€BlVI I {i,j}EE

Any binary polynomial optimization problem with linear constraints can be
reformulated as an unconstrained binary optimization problem.
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Semidefinite hierarchies for polynomial optimization

» (Binary) polynomial optimization is generally intractable
» This motivates the search for efficient bounds on the optimum
» Many such bounds have been proposed based on lift-and-project methods

» Today: two semidefinite hierarchies due to Lasserre
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The outer Lasserre hierachy (sum-of-squares hierarchy)

Observation
We can rewrite:

fmin =max{A€R: f—X>0onB"}

» The nonnegativity condition can be relaxed to a sum-of-squares condition:

max{\ € R: f — X is a sum-of-squares on B"},
meaning f(z) — A = >, pi(x) for all z € B™ for certain p; € R[x]
» We can then put a bound on the degree of the p;:
fey =max{X € R: f — X is a sum-of-squares of degree < 2r on B"},

meaning f(z) — A = >, pi(x) for all z € B™ for certain p; € R[z] of
degree at most r
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The outer Lasserre hierachy (sum-of-squares hierarchy)

Definition (Lasserre, 2001)
For r € N, define:

Jfey =max{A € R: f — X is a sum-of-squares of degree < 2r on B"}

> f(r) < f(r+1) < fmin

» For fixed r, f(y can be computed efficiently using semidefinite
programming

» There is a one-to-one correspondence between semidefinite matrices and
sum-of-squares polynomials:

p(x) is a sum-of-squares <= 3IM > 0 with p(x) = [z] " M][z],

where [z] = (2¥)q is the vector of monomials up to degree deg(p)/2
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The inner (measure-based) Lasserre hierachy

Observation
We can rewrite:

fmm:rr}/in{/andu:/Bnduzl}

Definition (Lasserre, 2010)

Let 1 be the uniform measure on B™. For r € N, define:

™ = min { f~sdu:/ sdu=1}
seX,[z] B™ n

S AL Ry N
> For fixed 7, ) can be computed efficiently using SDP

» In principle we could choose a different reference measure p.
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Summary

We have the hierarchies:

(outer) fy =max{X € R: f — Xis sos of degree < 2r on B"}

inner M — min - sdp d:l}
(inner) f {W’f sdp /nsu

SES,[z]
satisfying:
f(r) < fmin < f(r> < fmax
Question
What can be said about the quality of these hierarchies? That is, can we
bound: -
fmin - f(r) and f - fmin 2
1£lloo [ lloo

(here, [[flloc := maxeepn | f()[)
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Some broader context

Both hierarchies can be defined more generally for polynomial optimization
over sets K C R"™ other than the cube. Depending on K, their quality has
been investigated:

o(1/r%) if K =[—1,1]" (de Klerk, Laurent)

(inner) £ = fain _ o(1/r?) if K =81 (de Klerk, Laurent)
| f1loo o(1/r?) if K= B", A", 'nice’ (S., Laurent)
O(log®r/r?) for ‘general’ K (S., Laurent)

O(1/log(r/c)*/¢) if K ‘compact’ (Nie, Schweighofer)

(outer) % =< 0(1/r) if K =8""" (Doherty, Wehner)
- o(1/r?) if K =571 (Fang, Fawzi)

Note: The inner hierarchy is much better understood than the outer hierarchy
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Back to the binary cube

(outer)  fy =max{A € R: f — X is sos of degree < 2r on B"}

(inner) f" = min { fesdy: / sdy = 1}
SEX,[z] Bn n

Known results
» Finite convergence for the outer hierachy:

n+d—1N1

r) = Jmin h > ~ 5
fy = fmin when 7 > 5 5™

[Fawzi, Saunderson, Parrilo 2016 (d = 2)] [Sakaue et al. 2017 (d > 2)]
» Finite convergence for the inner hierachy:

f(r) = fmin Wwhen 7 >n

» But, nothing is known when the bounds are not exact
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Main new results

Theorem (Main result on the outer hierachy)

Let f € Rlz]a. Let &' 1 be the least root of the degree r + 1 Krawtchouk
polynomial (with parameter n). Then for any n and r < %n large enough, we
have:

fmm

me <Cq- (£r+1/n)

Theorem (Main result on the inner hierachy)
For any n and r < n, we have:

(r) _ ¢ .
f ”inmm 5 (57‘+1/n)

;_A

10/16



Main new results

Theorem (Levenshtein)
Fort € [0,1/2], write:
p(t)=1/2 —/t(1 —1t).
Then the least root £, of the degree r + 1 Krawtchouk polynomial satisfies:

& /n < lr/n)+c-(r/n)" 0 0723

> So, roughly:

fmm - f(r) <
TR
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Key steps of the proof for the outer hierarchy

Observation
We may assume for the proof that fmin = f(0) =0 and || f]|ec = 1.

Goal: Show that there exists a small A > 0 such that f 4+ X is a sum-of-squares
on B" of degree at most 2r.

1. Use the polynomial kernel technique to produce sum-of-squares
representations [Fang, Fawzi 2020]

2. Perform a symmetry reduction using classical Fourier analysis on B"

3. Link the reduced problem to an analysis of the inner hierarchy in a
univariate setting

4. Exploit a known connection between the inner hierarchy and extremal
roots of orthogonal polynomials (Krawtchouk)

Our result for the inner hierarchy can be extrapolated from steps 3 and 4.
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Step 1: The polynomial kernel technique (Fang, Fawzi 2020)

Goal: Find a sum-of-squares representation of f 4+ A for some small A > 0.

» Consider a polynomial kernel of the form:

K(z,y) := ¢*(dham(z,y)) (z,y € B"),

with ¢ € R[t], a univariate polynomial to be chosen later

» The kernel K induces a linear operator on R[x] by:

= 27
yEBn

1
Kp(z) := / PWK (,9)du(y) = - > p(W)K(z,y)
]B’V'L
» When p > 0 on B", then Kp is sos of degree < 2r on B™ (!)
> If we choose A big enough s.t. K~'(f + A) > 0 on B", we find that

F+A=KK '(f+)) is sos of degree < 2r on B"
SN———r

>0

» This immediately implies fuin — f(r) < A
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Step 2, 3 and 4:

Problem: How do we ensure that K™!(f + \) > 0 on B"?
> We want the eigenvalues of K to be as close as possible to 1 (so that
K ~Id).

2. If K(z,y) = ¢*(d(z,y)), then the eigenvalues \; of K are given by the
decomposition:

2r
) = Z)\iICg(t) where [C; is the Krawtchouk polynomial
i=0

3. Selecting the univariate polynomial g so that the \; are as close as
possible to 1 corresponds to a univariate instance of the inner hierarchy

4. In the univariate case, the inner hierarchy is well understood, and the
behaviour can be described using orthogonal polynomials
[de Klerk, Laurent 2020]
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Concluding remarks

> We have shown a guarantee on the outer hierarchy fumin — f(») using a
connection to (a special case of) the inner hierachy

» The treatment of this special case can be extended to obtain our result on
the inner hierarchy

» As far as we know, this is the first analysis in the setting r < %‘H

» But, our results apply only in the setting r =~ t - n. In particular they give
no information for fixed r € N

» Open question: is it possible to add (linear) constraints?
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