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to mixed integer linear programing problems. I also think the
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Let’s start in the continuous setting (which is strictly easier).

Suppose we want to approximate
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Minimal Requirements

If we can pick 24 points on S1, this is how we should do it
(admittedly: up to rotation but only up to rotation).



Minimal Requirements: Platonic Solids
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If we can pick 12 points on S2, this is how we should do it (up to
rotation but only up to rotation).



Sobolev-Lebedev Quadrature

Sergei Sobolev (1908–1989)

(Vyacheslav Lebedev, 1930–2010)



Sobolev (1962) gets right to the point

Integrate as many low-degree polynomials as possible exactly.



Spherical Designs

Suppose we want to approximate

1

|S2|

∫
S2
f (x)dx ∼ 1

N

N∑
n=1

f (xi ).

How to select the points?

Idea (Sobolev 1962)

Pick the points in such a way that as many spherical harmonics
(these are polynomials in R3 restricted to S2) as possible are
integrated exactly.



Spherical Harmonics



Checking our Minimal Requirements

Polynomials in R2 look like xmyn. On S1, they start looking like

(cos θ)m(sin θ)n

and trigonometric identities simplify this to classical Fourier series
sin θ, cos θ, sin 2θ, cos 2θ, . . . .
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The Dodecahedron has a great degree of symmetry. It integrates
all polynomials on S2 up to degree 5 exactly (dim(V ) = 36).
(Not quite as basic: this is optimal).
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The Dodecahedron has a great degree of symmetry. It integrates
all polynomials on S2 up to degree 5 exactly (dim(V ) = 36).
(Not quite as basic: this is optimal).



Ahrens & Beylkin, Proc. Royal Soc. 2009

Figure: A set of 302 weighted points on S2 integrating all polynomials up
to degree 29 exactly. Note that 302 = 900 ∼ 3 · 302



Many people have studied these points

An, Andreev, Astola, Bachoc, Bannai, Bojnak, Bondarenko,
Boumova, Boyvalenkov, Brauchart, Breger, Cameron, Chen,
Coulangeon, Dai, Damelin, Damerell, Danev, De La Harpe,
Delsarte, Dhillon, Ding, Dragnev, Dunkl, Ehler, Etayo, Fliege,
Frommer, Grabner, Godsil, Goethals, Gorbachev, Gräf, Gross,
Haemers, Hamkins, Hardin, Heath, Hirao, Hoggar, Hong, Koike,
Krahmer, Korevaar, Kueng, Kuperberg, Kulina, Lang, Lazzarini,
Leopardi, Levenshtein, Lovett, Lyubich, Maier, Marzo, Meyers,
Mhaskar, Mimura, Munemasa, Nakata, Nebe, Neumaier, Neutsch,
Nikov, Nikova, Okuda, Ortego-Cerda, Pache, Peled, Potts, Rabau,
Radchenko, Reznick, Roy, Saff, Sawa, Scott, Seidel, Seymour,
Shinohara, Sidelnikov, Sloan, Sloane, Suda, Suprijanto, Sustik,
Tagami, Tanaka, Tichy, Tiep, Tropp, Vallentin, Venkov, Viazovska,
Womersley, Xu, Yudin, Zaslavsky, Zeger, Zhou



Now: move this entire philosophical framework over to Graphs.

It is a priori not even clear that this works but it seems to work
(for reasons not entirely clear at this point).
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Some Graph Theory

We will work with finite, simple, connected Graphs G = (V ,E ).

Functions are now simply maps f : V → R. The integral is merely
a sum ∫

G
f :=

1

|V |
∑
v∈V

f (v).
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Some Graph Theory

Definition (Graphic Laplacian)

If f : V → R, then the Graph Laplacian (Lf ) : V → R is given by

(Lf )(u) =
∑
v∼Eu

(
f (v)

deg(v)
− f (u)

deg(u)

)
.

where the sum runs over all vertices v adjacent to u.

This is merely a linear operator, a |V | × |V | matrix. It has
eigenvalues and eigenvectors. These eigenvectors are the
Graph-analogues of the ‘polynomials on the sphere’.
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Some Graph Theory

Definition (Graphical Design)

I want to find subsets W ⊂ V such that the average of φk is the
same in W as in V for a large number of k .

1

|W |
∑
w∈W

φk(w) =
1

|V |
∑
v∈V

φk(v).

Why should they even exist at all? Originally I did not know! But
let’s have a look.
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Graphical Design on Dyck Graph

8 vertices integrate the first 16 of 32 eigenfunctions.



Graphical Design on Nauru Graph

6 vertices integrate 19 out of 24 eigenfunctions exactly.



Graphical Design on McGee Graph

8 vertices integrate the first 21 of 24 eigenfunctions.



Graphical Design on Generalized Petersen Graph

8 vertices integrate the first 22 of 24 eigenfunctions.



Graphical Design on Sylvester Graph

6 vertices integrate the first 26 of 36 eigenfunctions.



Figure: The Frucht Graph on 12 vertices: a subset W of 4 vertices
integrates the first 11 eigenfunctions exactly.



Main Result

Graphical Designs are amazing (S, J. Graph Theory, 2019)

A Graphical Design W is either

1. not particularly good

2. has W large (for example W = V )

3. or has exponential growth of neighborhoods.



How do we find them?

Definition (Graphical Design)

I want to find subsets W ⊂ V such that the average of φk is the
same in W as in V .

It’s clear that the cases I have shown you are algebraic miracles
and not robust. But certainly something similar works in general
with a suitable relaxation.
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Shahar Kovalsky found a nice way!

(Shahar Kovalsky, UNC Chapel Hill)



Shahar Kovalsky found a nice way!

Shahar Kovalsky proposes the `0−formulation of the Graphical
Design Problem

min
av∈{0,1}
‖a‖

`1
=k

‖Ua‖`0

where U is the matrix filled with entries of Laplacian eigenvectors.

He discovered that the mixed integer linear programming
formulation

min
av∈{0,1}
‖a‖

`1
=k

‖Ua‖`1

seems to be exact in many cases. Standard solvers work!



Shahar Kovalsky found a nice way!

Shahar Kovalsky proposes the `0−formulation of the Graphical
Design Problem

min
av∈{0,1}
‖a‖

`1
=k

‖Ua‖`0

where U is the matrix filled with entries of Laplacian eigenvectors.

He discovered that the mixed integer linear programming
formulation

min
av∈{0,1}
‖a‖

`1
=k

‖Ua‖`1

seems to be exact in many cases. Standard solvers work!



Shahar Kovalsky found a nice way!

(Example by Shahar)



‘Hey George, I proved a pretty useless result.’

George Linderman



The Lancet Cover from Last Year



A basic problem in medicine(!): you are given a finite graph
G = (V ,E ) (think of a facebook graph, people and their friends).

You have an unknown function

f : V → R (say, blood pressure).

You want to understand the average value of f and are allowed to
evaluate f in 3 vertices. Which 3 vertices do you choose?

This was the actual question George had to deal with.
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Linderman and S, Numerical Integration on Graphs, Mathematics
of Computation, 2020. This might be a really important
problem.



Another Fun Byproduct: ‘Actual’ Numerical Integration

The funny thing is that good ideas on graphs tend to also work in
the continuous setting. A ‘continuous’ object is merely a
particularly nice graph.

Matthias Sachs Jianfeng Lu









(Lu, Sachs, S, Constructive Approximation, ‘19).
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Integration Errors: purple is Graph Design heuristic. It works!



Many Questions Remain!

When do these magical Graphical Designs exist? What is required?
What about weights? How do we find them? (Mixed Integer
Programming?) How are they connected to classical Graph theory?
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Also relevant:

1. Konstantin Golubev, Graphical Designs and Extremal
Combinatorics (2020), connects to the Erdős-Ko-Rado
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2. Catherine Babecki, Codes, Cubes, and Graphical Designs
(2021) connects to coding theory



Thank you!


