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Main Objective

Given a gas network as a directed graph G = (V ,A), we want to find

global solutions of optimization problems of the form

min c(p, q, z)

s.t.
∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa = q
±
u ∀ u ∈ V ,

fa(x , pa(x), ∂x pa(x), q) = 0 ∀ a ∈ Apipe ⊆ A,

ga(pa, q, z) ≤ 0 ∀ a ∈ A \ Apipe,

pu = pa(0), pv = pa(La) ∀ a = (u, v ) ∈ Apipe,

q
a
≤ qa ≤ qa ∀ a ∈ A,

p
u
≤ pu ≤ pu ∀ u ∈ V ,

za ∈ {0, 1} ∀ a ∈ Z ⊆ A.

Here:

⊲ fa can be the stationary Euler equation (ISO1)

∂x p(x)

(

1 −
c2q2

A2p(x)2

)

= −
λc2

2DA2
q|q|

1

p(x)
−

g

c2
s p(x).

⊲ ga represents the models of the other network elements:

◦ linear models for (control)valves, resistors, compressors,

◦ nonlinear models for resistors, compressors.

⊲ za are discrete decisions, e.g., open/close valve.

Solution Approach

Idea: Replace fa = 0 by the relation Fin(pout , q) = pin.

⊲ Problem: We cannot compute Fin exactly.

⊲ Solution:

◦ By choosing two numerical methods with, respectively, nonpos-

itive and nonnegative local truncation error, we can compute

lower and upper bounds for Fin. In our case, we choose the

modified Euler’s method and the trapezoidal rule.

◦ Assuming s = 0, q > 0 and 4Ap > 5cq, i.e., the gas travels

with subsonic velocity, we define

h(p, q) := −
λc2q2p

2D (A2p2 − c2q2)
.

Thus, ∂x p(x) = h
(

p(x), q
)

holds.

◦ After dividing [0, L] into N equidistant steps, we compute

p
e
N = p(L), p

e
i−1 = p

e
i − △x h

(

p
e
i −

△x

2
h(p

e
i , q), q

)

,

p
t
N = p(L), p

t
i−1 = p

t
i −

1

2
△x

[

h(p
t
i−1, q) + h(p

t
i , q)

]

for i = N, ... , 1 and △x := L/N.

◦ Then we define pe
in(pe

N , q) := pe
0 and pt

in(pt
N , q) := pt

0, such that

the following inequality holds:

p
e
in(p

e
N , q) ≤ p(0) ≤ p

t
in(p

t
N , q).

◦ Hence, we can replace fa = 0 with

p
e
in(pv , qa) ≤ pu ≤ p

t
in(pv , qa).

The Functions pe
in, pt

in

⊲ Assuming △x < 0.16 D

λ
, the functions pe

in and pt
in are:

◦ monotone increasing w.r.t. p and q,

◦ convex in (p, q),

◦ and continuously differentiable.

These are the same properties as Fin has.

⊲ Via adapting Newton’s method:

◦ Solve trapezoidal rule with a tolerance of 10−5Pa.

◦ Solution is an upper bound on the exact solution, i.e., p(0) ≤ pt
0

is guaranteed.

⊲ Gradient cuts for pe
in are valid inequalities if orientation of flow is

fixed. (The relation Fin(pout , q) = pin is convex.)

Algorithmic Procedure

We use a (spatial) Branch-and-Cut approach with the framework SCIP.

In every node we perform the following steps:

1. Bound Propagation

2. Solve relaxation (i.e., model without the ODEs)

3. For every a = (u, v ) ∈ Apipe check if solution (pu , pv , qa) is feasible,

i.e.,

p
e
in(pv , qa) ≤ pu ≤ p

t
in(pv , qa) if qa ≥ 0,

p
e
in(pu , qa) ≤ pv ≤ p

t
in(pu , qa) if qa < 0.

If pt
in(pv , qa) − pe

in(pv , qa) ≥ δ or pt
in(pu , qa) − pe

in(pu , qa) ≥ δ
holds, we increase N and recompute the schemes.

4. Choose the most infeasible pipe

and either

a) fix orientation of flow,

b) add a concave overestimator,

c) perform branching,

d) or add a gradient cut.

Upcoming Work

⊲ Convergence analysis of the algorithm.

⊲ Extend theory to non-horizontal pipes, i.e., s 6= 0.

⊲ Identify minimal requirements, such that this approach works.


