Global Methods for Stationary Gastransport

Main Objective

Given a gas network as a directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{A})$, we want to find global solutions of optimization problems of the form

$$
\begin{array}{ll}
\min & c(p, q, z) \\
\text { s.t. } \sum_{a \in \delta^{+}(u)} q_{a}-\sum_{a \in \delta^{-}(u)} q_{a}=q_{u}^{ \pm} & \forall u \in \mathcal{V}, \\
f_{a}\left(x, p_{a}(x), \partial_{x} p_{a}(x), q\right)=0 & \forall a \in \mathcal{A}_{\text {pipe }} \subseteq \mathcal{A}, \\
g_{a}\left(p_{a}, q, z\right) \leq 0 & \forall a \in \mathcal{A} \backslash \mathcal{A}_{\text {pipe }}, \\
p_{u}=p_{a}(0), p_{v}=p_{a}\left(L_{a}\right) & \forall a=(u, v) \in \mathcal{A}_{\text {pipe }}, \\
\underline{q}_{a} \leq q_{a} \leq \bar{q}_{a} & \forall a \in \mathcal{A}, \\
\underline{p}_{u} \leq p_{u} \leq \bar{p}_{u} & \forall u \in \mathcal{V}, \\
z_{a} \in\{0,1\} & \forall a \in \mathcal{Z} \subseteq \mathcal{A} .
\end{array}
$$

Here:
$\triangleright f_{a}$ can be the stationary Euler equation (ISO1)

$$
\partial_{x} p(x)\left(1-\frac{c^{2} q^{2}}{A^{2} p(x)^{2}}\right)=-\frac{\lambda c^{2}}{2 D A^{2}} q|q| \frac{1}{p(x)}-\frac{g}{c^{2}} s p(x)
$$

$\triangleright g_{a}$ represents the models of the other network elements:

- linear models for (control)valves, resistors, compressors,
- nonlinear models for resistors, compressors.
$\triangleright z_{a}$ are discrete decisions, e.g., open/close valve.

Solution Approach

Idea: Replace $f_{a}=0$ by the relation $F_{\text {in }}\left(p_{\text {out }}, q\right)=p_{\text {in }}$.
\triangleright Problem: We cannot compute $F_{\text {in }}$ exactly.
\triangleright Solution:

- By choosing two numerical methods with, respectively, nonpositive and nonnegative local truncation error, we can compute lower and upper bounds for $F_{i n}$. In our case, we choose the modified Euler's method and the trapezoidal rule.
\circ Assuming $s=0, q>0$ and $4 A p>5 c q$, i.e., the gas travels with subsonic velocity, we define

$$
h(p, q):=-\frac{\lambda c^{2} q^{2} p}{2 D\left(A^{2} p^{2}-c^{2} q^{2}\right)}
$$

Thus, $\partial_{x} p(x)=h(p(x), q)$ holds.

- After dividing $[0, L]$ into N equidistant steps, we compute

$$
\begin{array}{ll}
p_{N}^{e}=p(L), & p_{i-1}^{e}=p_{i}^{e}-\Delta x h\left(p_{i}^{e}-\frac{\Delta x}{2} h\left(p_{i}^{e}, q\right), q\right) \\
p_{N}^{t}=p(L), & p_{i-1}^{t}=p_{i}^{t}-\frac{1}{2} \Delta x\left[h\left(p_{i-1}^{t}, q\right)+h\left(p_{i}^{t}, q\right)\right]
\end{array}
$$

for $i=N, \ldots, 1$ and $\Delta x:=L / N$.

- Then we define $p_{i n}^{e}\left(p_{N}^{e}, q\right):=p_{0}^{e}$ and $p_{i n}^{t}\left(p_{N}^{t}, q\right):=p_{0}^{t}$, such that the following inequality holds:

$$
p_{i n}^{e}\left(p_{N}^{e}, q\right) \leq p(0) \leq p_{i n}^{t}\left(p_{N}^{t}, q\right)
$$

- Hence, we can replace $f_{a}=0$ with

$$
p_{i n}^{e}\left(p_{v}, q_{a}\right) \leq p_{u} \leq p_{i n}^{t}\left(p_{v}, q_{a}\right)
$$

The Functions $p_{\text {in }}^{e}$, $p_{\text {in }}^{i}$

\triangleright Assuming $\Delta x<0.16 \frac{D}{\lambda}$, the functions $p_{i n}^{e}$ and $p_{i n}^{t}$ are:
\circ monotone increasing w.r.t. p and q,

- convex in (p, q),
- and continuously differentiable.

These are the same properties as $F_{i n}$ has.
Δ Via adapting Newton's method:

- Solve trapezoidal rule with a tolerance of $10^{-5} \mathrm{~Pa}$.
- Solution is an upper bound on the exact solution, i.e., $p(0) \leq p_{0}^{t}$ is guaranteed.
\triangleright Gradient cuts for $p_{i n}^{e}$ are valid inequalities if orientation of flow is fixed. (The relation $F_{\text {in }}\left(p_{\text {out }}, q\right)=p_{\text {in }}$ is convex.)

Algorithmic Procedure

We use a (spatial) Branch-and-Cut approach with the framework SCIP. In every node we perform the following steps:

1. Bound Propagation
2. Solve relaxation (i.e., model without the ODEs)
3. For every $a=(u, v) \in \mathcal{A}_{\text {pipe }}$ check if solution $\left(p_{u}, p_{v}, q_{a}\right)$ is feasible, i.e.,

$$
\begin{aligned}
& p_{i n}^{e}\left(p_{v}, q_{a}\right) \leq p_{u} \leq p_{i n}^{t}\left(p_{v}, q_{a}\right) \text { if } q_{a} \geq 0 \\
& p_{i n}^{e}\left(p_{u}, q_{a}\right) \leq p_{v} \leq p_{i n}^{t}\left(p_{u}, q_{a}\right) \quad \text { if } q_{a}<0
\end{aligned}
$$

If $p_{i n}^{t}\left(p_{v}, q_{a}\right)-p_{i n}^{e}\left(p_{v}, q_{a}\right) \geq \delta$ or $p_{i n}^{t}\left(p_{u}, q_{a}\right)-p_{i n}^{e}\left(p_{u}, q_{a}\right) \geq \delta$ holds, we increase N and recompute the schemes.
4. Choose the most infeasible pipe and either
a) fix orientation of flow,
b) add a concave overestimator,
c) perform branching,
d) or add a gradient cut.

Upcoming Work

\triangleright Convergence analysis of the algorithm.
\triangleright Extend theory to non-horizontal pipes, i.e., $s \neq 0$.
\triangleright Identify minimal requirements, such that this approach works.

DESSEN R G

