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Problem Statement

Gas dynamics on a network is an alluring connection between

discrete and continuous mathematics in the sense that the gas

flow is driven, on the one hand, by continuous evolution equa-

tions on each pipe and, on the other hand, by time-discrete

switching processes of valves and compressors. This project’s

motivation is the control of the gas dynamics by choosing op-

timal switching decisions for such active elements. To this end

we develop a general theory for mixed integer-continuous dy-

namical systems driven by a set of PDEs that are coupled by

switching rules of either an explicit or a state-dependent implicit

type. The sought results, however, promise a gain of insights in

hybrid systems far beyond the difficulty of gas networks.
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Mixed integer-continuous system. The state z and the mode j

evolve in time t ≥ 0 by provision of

⊲ a PDE generated by F j (while j is constant),

⊲ a jump generated by R j ,j′ (when switching from j to j ′).

Optional: α(t), y (t) for input- or output-signals.

Initial Situation

Model gas density ̺ and flux q on each pipe of the network by
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and coupling conditions:

(1) Density is continuous at each node.

(2) Flows must sum up to zero at each node.

Active elements are nodes that can be switched:

· valves can be open/closed

· compressors can be on/off

A cost functional penalizes operational costs, the violation of

gas demands, etc.

Task: Operate active elements by optimal switching decisions!

Challenges

⊲ integer-continuous parametrization of time and space with

relevant multiscale interpretation of the dynamics

⊲ well-posedness: continuous dependency on initial data

and Zeno phenomena

⊲ adjoint equation and gradients with respect to variation of

switching times and order

⊲ existence of optima, necessary optimality conditions,

optimization methods

Work Schedule

WT 1: systems with semigroups

⊲ hybrid systems of semilinear PDEs with strongly continu-

ous semigroups and transition maps at switching points

⊲ existence and regularity of solutions, independent of the

switching sequence

⊲ sensitivity analysis with respect to switching times and or-

der, adjoint calculus and necessary optimality conditions

WT 2: application to gas

⊲ semigroup formulation for (ISO2) on a network

⊲ optimal switching of valves and compressors, numerical

proof of concept implementation

WT 3: feedback-controlled switching decisions

⊲ formulation of state-dependend switching rules

⊲ existence of solutions, continuous dependence on initial

data, zeno phenomena

⊲ convergence of solutions in the sense of graphs on hybrid

structures (in time and space)
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