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B: Problem Statement

min
x

c
⊤

x (1a)

s.t.
¯
x ≤ x ≤ x̄ , xC ∈ R

|C|
, xI ∈ Z

|I|
, Ax ≥ b, (1b)

xd2 = fd (xd1 ) for all d ∈ D. (1c)

⊲ nonconvex MINLP with nonlinear “black-box” functions fd : R → R

⊲ “black-box”: no explicit knowledge required

C: Decomposition Algorithm

⊲ master problem: “easy” mixed-integer linear part (1a) and (1b)

⊲ subproblem: nonlinear “black-box” functions (1c)

⇒ alternatingly solving relaxed MIPs (master problem) and separation

problems (subproblem) for refining nonlinearities
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master problem:

⊲ solve MIP with relaxed, linear

set (gray) of (1c) ⇒ xMaster

subproblem:

⊲ “black-box”: yield closest, feasi-

ble solution to xMaster ⇒ xSub

⊲ “black-box”: create cuts (red)

for next iteration
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⊲ stop criterion

◦ MIP in master problem yields infeasibility ⇒ (1c) is infeasible

◦ ||xMaster − xSub||22 ≤ ε ⇒ xMaster is ε-feasible

⊲ proof correctness (sketch)

◦ assumption: functions fd are strictly monotonic, stricly concave

or convex, differentiable with bounded first derivative

◦ xMaster is cut off for following iteration

◦ sequence of solutions xMaster converges to ε-feasible solution

E: Work in Progress

⊲ development for higher dimensional functions fd in (1c)

⊲ instationary aspects for gas transport optimization
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D: Application in Stationary Gas Transport Optimization

⊲ model for nomination validation

◦ decide feasibility of supply & discharge flows

◦ linear objective (1a): minimize compressor costs

◦ variables and linear constraints (1b): binary variable for com-

pressors/control valves, flow/density variables, linearized com-

pressor model, control valve model, conservation of mass.

◦ “black-box” functions fd in (1c): connecting entry and exit

density of pipes via Euler equations for compressible fluids:
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λ : friction factor

D : pipe diameter

q : flow

ρ : density

⊲ test instance: Greek natural gas network (http://www.desfa.gr)

topology:

3 entries

45 exits

1 compressor

1 control valve

86 pipes

results:

(11/01/2011–02/17/2016)

# ∅ It. ∅ Time (s)

opt. 1014 4.86 15.75

inf. 220 2.11 5.97

A: Summary

The objective of this project is the development of mathematical algo-

rithms to find an optimal control for mixed-integer problems on trans-

port networks with the help of decomposition methods. The optimiza-

tion problems are planned to be decomponed with respect to variables

but also with respect to subsystems. On the upper level, there are in-

teger decisions, while on the lower level the focus is on continuous

variables. Additionally we want the subproblem to provide disjunctions

for the masterproblem, because such an approach enables the algo-

rithm to find global optima for non-convex problems as well. So the

focus of the subproject A05 is on the mathematical analysis of struc-

tured MINLPs in the light of hierarchic models.


