Subproject B01

Adaptive Dynamic Multiscale Methods

Mathematical modeling, mulation, and optimization using the example of gas networks

Pascal Mindt Pia Domschke Jens Lang

Summary

The aim of this project is the development of a dynamic multiscale approach for the numerical solution of the compressible instationary Euler equations on networks. The modelling is based on the one-dimensional Euler equations. With physically simplified models these equations form a model hierachy in a natural manner. Using adjoint-based a posteriori error estimators, on accuracy-controlled adaptive simulation of practicaly relevant gas networks is realized. Core points are an efficient control of spatial and temporal discretizations as well as the model hierachy to create a basis for multilevel optimization.

Euler Equations

 $\label{eq:constraint} \begin{array}{rcl} \triangleright \mbox{ The temperature-dependent instationary Euler equations are} \\ \left\{ \begin{array}{rcl} U_t + F(U) &=& G(U), \ (x,t) \in [a,b] \times (0,T], \ 0 < T, \ a < b \\ U(x,0) &=& U_0(x), \ x \in [a,b] \end{array} \right. \\ \end{array} \right.$

$$U \equiv \begin{pmatrix} \rho \\ q \\ E \end{pmatrix}, \ F(U) \equiv \begin{pmatrix} q \\ \frac{q^2}{\rho} + p \\ \frac{q}{\rho}(E + p) \end{pmatrix}, \ G(U) \equiv \begin{pmatrix} 0 \\ -\frac{\lambda q |q|}{2D\rho} \\ -\frac{k_w}{D} (T - T_w) \end{pmatrix}$$
(1)

- ▷ The variables ρ , q, E, p, T stand for *density, mass flux, total* energy, pressure and *temperature* respectively. It holds $E = \frac{p}{\gamma - 1} + \frac{q^2}{\rho}$ and $T = \frac{p}{R\rho}$ to close the system.
- \triangleright Further definitions: γ adiabatic coefficient, λ friction coefficient, D pipe diameter, k_w heat exchange rate, T_w outer temperature, R gas constant.

Finite Volume Approach

Integration of (1) over the intervals $I_i \equiv [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$: $[a, b] = \bigcup_{i=1}^{M} I_i$ leads to the semi-discrete ODE-system

$$\partial_t \bar{U}_i(t) = \mathcal{L}_i(\mathbf{U})(t) \equiv -\frac{1}{\Delta x} \left(\hat{F}_{i+\frac{1}{2}}(t) - \hat{F}_{i-\frac{1}{2}}(t) \right) + G_i(t), \ i = 1, ..., M,$$
(2)

with

▷ Finite volume
$$\mathbf{U}(t) \equiv \left(\overline{U}_i(t)\right)_{i=1}^M$$
, $\overline{U}_i(t) \equiv \frac{1}{\Delta x} \int_{I_i} U(x, t) dx$,

- ▷ Numerical flux function $\hat{F}_{i+\frac{1}{2}}(\mathbf{U})(t) \approx F(U(x_{i+\frac{1}{2}}, t))$
- ▷ Numerical integration of the source $G_i(t) \approx \frac{1}{\Delta x} \int_{I_i} G(U(x, t)) dx$
- \triangleright Spatial grid size $\Delta x \equiv x_{i+rac{1}{2}} x_{i-rac{1}{2}}$,

Numerical Treatment of the Euler Equations

 \triangleright Involving the weighted essentially non-oscilatory procedure $\mathcal W$

$$\partial_t \mathbf{U}(t) = \mathcal{L}\left(\mathcal{W}(\mathbf{U})\right)(t) \tag{3}$$

UNIVERSITÄT DARMSTADT

Technische Universität

Darmstadt

www.tu-darmstadt.de

increases the spatial order, cp. [1].

 \triangleright (3) is then solved numerically on the time grid

$$[t^{n}, t^{n+1}]_{n=1}^{N}$$
: $\bigcup_{n=1}^{N} [t^{n}, t^{n+1}]$, with $\Delta t \equiv t^{n+1} - t^{n}$

by an *s*-stage *singly diagonally implicit Runge-Kutta* method of order 2 (SDIRK(2, *s*))

$$Y_{j} = \mathbf{U}^{n} + \Delta t \sum_{k=1}^{s} a_{j,k} \mathcal{L}(\mathcal{W}(Y_{k})), \ 1 \le j \le s$$
$$\mathbf{U}^{n+1} = \mathbf{U}^{n} + \Delta t \sum_{k=1}^{s} b_{k} \mathcal{L}(\mathcal{W}(Y_{k}))$$
(4)

with $\mathbf{U}^n \approx \mathbf{U}(t^n)$ and the optimal parameters

$$a_{k,k} = \frac{1}{2s}, \ a_{j,k} = \frac{1}{2s}, \ j < k, \ b_k = \frac{1}{s}.$$

 \triangleright Whenever ($\mathcal{L}, \|\cdot\|)$ has a contractive *forward Euler* step (FE)

$$\|\mathbf{U} + \Delta_{FE} \mathcal{L}(\mathbf{U})\| \leq \|\mathbf{U}\|$$

(4) provides a strong stability preserving solution in $\|\cdot\|$, cp. [2]

$$\|Y_j\| \leq \|\mathbf{U}^n\|, \ \forall \Delta t \leq 2s\Delta t_{FE}, \ 1 \leq j \leq s.$$

Contribution to Demonstrator 3

Simulation of temperature dependent Euler equations

References

- [1] G. Jiang, C. Shu. Efficient implementation of weighted ENO schemes. Technical report, DTIC Document, 1995
- [2] M.N. Spijker. Stepsize conditions for general monotonicity in numerical initial value problems. *SIAM Journal on Numerical Analysis*, 45(3): 1226-1245, 2007

