Subproject B04

Mathematical modeling,

simulation, and optimization using the example

of gas networks

Nonlinear probabilistic constraints in gas transportation problems

Weierstraß-Institut für Angewandte Analysis und Stochastik www.wias-berlin.de

Tatiana González Grandón Holger Heitsch René Henrion

Topic and Challenges

The aim of this project consists in applying nonlinear probabilistic constraints to optimization problems in gas transportation assuming the underlying random parameter obeys a multivariate and continuous distribution. Robustness in the sense of probabilistic network design shall be facilitated.

- Modeling of uncertain parameters as random vectors with multivariate distribution, taking network node correlations into consideration
- Using continuous distributions for higher efficiency compared with discretization of the random vector
- Optimization in gas transport networks requires non-linear and even implicit probabilistic constrains
- There are no analytical representations for both function values and gradients of the probability function

Probabilistic Constraints

Stochastic optimization problem with probabilistic constraints:

 $\min\{f(x) \mid \varphi(x) \ge p, \ x \in X\}$

Probability function: $\varphi(x) := \mathbb{P}(g(x,\xi) \le 0)$

In general, both values and gradients are needed for $\varphi(\cdot)$: Spheric-Radial Decomposition: $\xi \in \mathcal{N}(0, \Sigma)$ with $\Sigma = LL^{\top}$ If $g(x, \cdot)$ continuous, convex and *x* such that $g(x, 0) \leq 0$. Then

$$\varphi(\mathbf{x}) = \int_{\mathbf{v} \in \mathbb{S}^{n-1}} \chi_{\mathrm{cdf}}(\rho(\mathbf{x}, \mathbf{v})) d\mu_{\eta}(\mathbf{v}),$$

where $\rho(x, v) := \sup \{r \ge 0 \mid g(x, rLv) \le 0\}.$

Additionally, if $g:\mathbb{R}^s imes\mathbb{R}^n o\mathbb{R}$ continuously differentiable, then

 $\nabla \varphi(x) = \int_{v \in \mathbb{S}^{n-1}} -\frac{\chi_{\text{pdf}}(\rho(x, v))}{\langle \nabla_{\xi} g(x, \rho(x, v)Lv), Lv \rangle} \nabla_{x} g(x, \rho(x, v)Lv) d\mu_{\eta}(v)$

In general: Smooth g, ξ do not imply smooth probability functions

Derivatives (subdifferential) in terms of Clarke or Mordukhovich

Spheric-Radial Decomposition

Let be $\xi \sim \mathcal{N}(0, \Sigma)$ *n*-dimensional Gaussian random vector with covariance $\Sigma = LL^{\top}$. Then it holds:

$$\mathbb{P}(\xi \in M) = \int\limits_{\mathbb{S}^{n-1}} \chi\{r \ge 0 \mid rLv \in M\} d\mu_{\eta}(v),$$

where \mathbb{S}^{n-1} is the unit sphere in \mathbb{R}^n , μ_η the law of uniform distribution on it. χ is the law of chi-distribution with *n* degree of freedom.

Stationary Gas Networks

Feasibility of exit load nomination *b* for pressure bounds $p^{min/max}$

 $\exists z : A_N^{\top} g(b, z) = \Phi_N |z| z$ $\min_{k=1,\dots,|\mathcal{V}|} \left[(p_k^{max})^2 + g_k(b, z) \right] \geq \max_{k=1,\dots,|\mathcal{V}|} \left[(p_k^{min})^2 + g_k(b, z) \right]$ $(p_0^{min})^2 \leq \min_{k=1,\dots,|\mathcal{V}|} \left[(p_k^{max})^2 + g_k(b, z) \right]$ $(p_0^{max})^2 \geq \max_{k=1,\dots,|\mathcal{V}|} \left[(p_k^{min})^2 + g_k(b, z) \right]$

Definition: $g(u, v) := (A_B^{\top})^{-1} \Phi_B | A_B^{-1}(u - A_N v) | A_B^{-1}(u - A_N v)$ $A = (A_B | A_N)$ incidence matrix, $\Phi = (\Phi_B | \Phi_N)$ frictional coefficients

Uncertainty: Nomination *b* assumed to be of Gaussian type

Joint Robust/Probabilistic Approach

Two different characters of uncertainty:

- 1. Gas demand (nominations) \Rightarrow Distribution available
- 2. Friction coefficients \Rightarrow No statistical information available

Find maximum uncertainty allowed for friction coefficients while guaranteeing demand satisfaction at high probability:

$\max \left\{ f(\delta) \middle| \mathbb{P}(g(\Phi, b) \leq 0 \quad \forall \Phi \in U_{\delta}) \geq p \right\}$

Out-of-sample constraint violation (p = 0.80) for fixed uncertainty set

References

- [1] W.Ackooij, R.Henrion: Gradient formulae for nonlinear probabilistic constraints with Gaussian-like distributions, SIAM Journal on Optimization 24 (2014), 1864-1889.
- [2] C.Gotzes, H.Heitsch, R.Henrion, R.Schultz: Feasibility of nominations in stationary networks with random load, to appear in MMOR (2016).
- [3] H.Heitsch, H.Leövey and W.Römisch: Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs?, COAP (2016), DOI 10.1007/s10589-016-9843-z.

