Subproject B06

nulation, and optimization

Robustification of Physical Parameters in Gas Networks

Friedrich-Alexander Universität Erlangen-Nürnberg www.uni-erlangen.de

ng the exampl gas networks

Denis Aßmann Frauke Liers Michael Stingl

gas network with active elements and flows *q*, pressure *p*

$$\sum_{a \in \delta^{+}(v)} q_{a} - \sum_{a \in \delta^{-}(v)} q_{a} = q_{a}^{\text{nom}} \qquad \forall v \in V$$

$$p_{u}^{2} - p_{v}^{2} = \phi_{a}q_{a}|q_{a}| \qquad \forall a = (u, v) \in A$$
active elements
$$p_{v} \in [\underline{p}_{v}, \overline{p}_{v}] \qquad \forall v \in V$$

Passive Networks: Set Containment Approach

- ▷ robust feasible: $\forall \phi \in \mathcal{U} \exists$ feasible $p, q \iff \mathcal{U} \subseteq \operatorname{Proj}_{\phi}(\mathcal{B})$
- > leads to polynomial optimization problems (SDP approximation hierarchy)

Deciding Feasibility

 \triangleright result: $\mathcal{U} \subseteq \operatorname{Proj}_{\phi}(\mathcal{B}) \iff$

$$\mathcal{G} = \{x \mid g_j(x) = 0, j \in J\} \subseteq \mathcal{H} = \{x \mid h_i(x) \leq 0, i \in I\}$$

for g_j , h_i polynomial functions

▷ need to check if for all $i \in I$: max_{x∈G} $h_i(x) \leq 0$

computational experiments for feasible one-cycle networks:

nodes	#probs	hierarchy level			mean cpu [s]			#infeas.
		2	3	4	2	3	4	
3	6	6	0	0	0.5	3.5	6.1	0
4	12	5	1	6	0.9	3.7	30.0	6
5	20	10	0	10	1.0	8.7	198.0	0

Deciding Infeasibility

 \triangleright find polynomial f which is non-negative on $\operatorname{Proj}_{\phi}(\mathcal{B})$ but is negative for some $\hat{\phi} \in \mathcal{U}$

 \triangleright result: *f* exists if $\mathcal{U} \setminus \operatorname{Proj}_{\phi}(\mathcal{B})$ contains an open subset

Preprint: D. Aßmann, D. den Hertog, F. Liers, M. Stingl, J. Vera. Deciding Robust Feasibility and Infeasibility Using a Set Containment Approach: An Application to Stationary Passive Gas Network Operations

possible sources of uncertainty: demand $q^{nom} \in D$, roughness $\phi \in U$

goal:

challenge:

Active Networks: Splitting the Uncertainty Set

▷ piecewise linear relaxation of pressure-drop functions

is there a configuration of the active elements such that there is a feasible pressure/flow for every value in the uncertainty set?

multi-stage non-convex mixed-integer robust optimization problem

- > so far: works on networks with edge-disjoint cycles
- \triangleright result: segments of linearization map to partitions of \mathcal{U}
- \triangleright splitting of \mathcal{U} allows elimination of auxiliary binary variables for piecewise linearization on second stage

Experimental Splitting in Strict Robust Model

> three-node network with two uncertain pipes

- \triangleright adaptive splitting of \mathcal{U} until feasibility is reached
- ▷ 6 iterations (732 partitions)

Contributions

- > Demo 3: validation of solutions via set containment, maximization of additional gas flow via splitting approach
- \triangleright Uncertainty Team (\rightarrow talk by René Henrion)

