Perturbation Analysis of Hyperbolic PDAEs Describing Gas Networks

Humboldt-Universität zu Berlin

Christoph Huck Caren Tischendorf

www.hu-berlin.de

PDAE Model

Gas transport through a network $\mathcal{G}=(V, \mathcal{E})$ can be described by a set of hyperbolic PDEs

$$
\begin{align*}
& \partial_{t} p_{e}+\alpha_{e} \partial_{x} q_{e}=0 \\
& \partial_{t} q_{e}+\beta_{e} \partial_{x} p_{e}=-\gamma_{e} \frac{q_{e}\left|q_{e}\right|}{p_{e}}-\sigma_{e} p_{e} \tag{ISO2}
\end{align*} \quad e \in \mathcal{E}_{\mathcal{P}}
$$

where p_{e} and q_{e} are the pressure and mass flow, α_{e}, β_{e} are pipe parameter dependent, γ_{e} is a friction term and σ_{e} accounts for a possible slope. Additional elements like compressors

$$
\begin{aligned}
H_{\mathrm{ad}, \mathrm{e}} & =\kappa\left[\left(p_{\text {in,e }} / p_{\text {out }, e}\right)^{\zeta}-1\right] \\
H_{\mathrm{ad}, e} & =\Phi\left(Q_{e}, n_{e} ; A_{e}^{n}\right) \\
\eta_{\mathrm{ad}, \mathrm{e}} & =\Phi\left(Q_{e}, n_{e} ; A_{e}^{\eta}\right) \\
Q_{e} & =c^{2} q_{e} / p_{\text {in,e }}
\end{aligned}
$$

with control $p_{\text {out }, e}=p_{\text {set }, e}$ or $q_{e}=q_{\text {set }, e}$

$$
\begin{array}{ll}
\text { valves } & p_{i n, e}=p_{\text {out }, e} \quad q_{e}=0 \quad e \in \mathcal{E}_{\mathcal{S}} \\
\text { resistors } & p_{\text {in }, e}-p_{\text {out }, e}=\xi_{e} \frac{q_{e}\left|q_{e}\right|}{p_{i n, e}} \quad e \in \mathcal{E}_{\mathcal{R}} \tag{RES}
\end{array}
$$

(VAL-ON/OFF)
are coupled to the pipes by a set of balance equations for the flows and pairwise mappings for the pressures

$$
\begin{align*}
A_{R} q_{\mathcal{P}, R}+ & A_{L} q_{\mathcal{P}, L}+A_{\mathcal{C}} q_{\mathcal{C}}+A_{\mathcal{S}} q_{\mathcal{S}}+A_{\mathcal{R}} q_{\mathcal{R}}=q^{\Gamma} \tag{1}\\
B_{R}^{\top} p_{\mathcal{P}, R}+ & B_{L}^{\top} p_{\mathcal{P}, L}+B_{\mathcal{C}}^{\top} p_{\mathcal{C}}+B_{\mathcal{S}}^{\top} p_{\mathcal{S}}+B_{\mathcal{R}}^{\top} p_{\mathcal{R}}=0 . \tag{2}\\
& \quad p_{e, L}=p_{u}^{\Gamma} \tag{3}
\end{align*}
$$

with $A=\left[A_{R} A_{L} A_{\mathcal{C}} A_{\mathcal{S}} A_{\mathcal{R}}\right]$ the incidence matrix of \mathcal{G} and $B \in \operatorname{ker}|A|$.

Perturbation Behaviour

\triangleright Depending on the semi-discretization in space of system (ISO2) \& (1)-(3), the resulting DAEs may be of arbitrary high index.
\triangleright Solutions may not reflect the properties of the PDAE system correctly.
Example: $\quad V=\left\{u_{1}, \ldots, u_{6}\right\} \quad V_{+}=\left\{u_{1}\right\} \quad \mathcal{E}=\left\{e_{1}, \ldots, e_{7}\right\}$

$\delta_{u_{6}}^{q}=10^{-4} \sin \left(10^{6} t\right) \mathrm{kg} / \mathrm{s}$

Mass inflow at u_{1},
$\max \Delta x=40 \mathrm{~km}$.

Extension to General Networks

\triangleright This approach seems applicable to more general gas networks e.g., with compressors (COM)
\triangleright Analysis of hyperbolic PDAEs of the form

$$
\begin{aligned}
\mathfrak{u}^{\prime}+\mathcal{B u}+\mathcal{D}(\mathfrak{u}, z, t) & =0 \quad \text { in } \mathcal{H} \\
g(z, t) & =0
\end{aligned}
$$

$\triangleright g$ possesses some properties that have been proven useful in the treatment of elliptic and parabolic PDAEs of that form.

Perturbed Problem

We are interested in the behaviour of a solution of a pipe network described by equations (ISO2) and (1)-(3) regarding perturbations in these equations.

$$
\begin{align*}
& \partial_{t} p_{e}^{\delta}+\alpha_{e} \partial_{x} q_{e}^{\delta}=\delta_{e, 1}^{\Omega} \\
& \partial_{t} q_{e}^{\delta}+\beta_{e} \partial_{x} p_{e}^{\delta}=\delta_{e, 2}^{\Omega}-\gamma_{e} \frac{q_{e}^{\delta}\left|q_{e}^{\delta}\right|}{p_{e}^{\delta}}-\sigma_{e} p_{e}^{\delta} \quad e \in \mathcal{E}_{\mathcal{P}} \\
& A_{R} q_{\mathcal{P}, R}^{\delta}+A_{L} q_{\mathcal{P}, L}^{\delta}=q^{\Gamma}+\delta^{q} \quad B_{R}^{\top} p_{\mathcal{P}, R}^{\delta}+B_{L}^{\top} p_{\mathcal{P}, L}^{\delta}=\delta^{p} \\
& p_{e, L}^{\delta}=p_{u}^{\Gamma}+\delta_{u}^{p} \quad e \in \delta^{-}(u), \quad u \in V_{+} .
\end{align*}
$$

Homogenization

Choosing homogenization functions for (p, q) and $\left(p^{\delta}, q^{\delta}\right)$

$$
\bar{q}_{e}^{\delta}:=\left\{\begin{array}{ll}
\frac{x}{\ell_{e}}\left(q_{u}^{\Gamma}+\delta_{u}^{q}\right) & e=e_{1} \\
0 & \text { else }
\end{array} \quad \bar{p}_{e}^{\delta}:= \begin{cases}\frac{\ell_{e}-x}{\ell_{e}}\left(p_{u}^{\Gamma}+\delta_{u, e}^{p}\right) & u \in V_{+} \\
\frac{e_{\theta}-x}{\ell_{e}} \delta_{u, e}^{p} & u \notin V_{+}, e \in \mathcal{T} \\
\frac{e_{e}-x}{\ell_{e}} \delta_{u, e}^{p}+\frac{x}{\ell_{e}} \delta_{v, e}^{p} & \text { else }\end{cases}\right.
$$

for $e=(u, v) \in \mathcal{E}, \delta^{+}(u)=\left\{e_{1}, \ldots, e_{n_{u}}\right\}$.
If $\left(\hat{p}^{\delta}, \hat{q}^{\delta}\right)$ solves (ISO2') with ($\left.1^{\prime}\right)-\left(3^{\prime}\right)$, then $\left(p^{\delta}, q^{\delta}\right)=\left(\hat{p}^{\delta}-\bar{p}^{\delta}, \hat{q}^{\delta}-\bar{q}^{\delta}\right)$ solves

$$
\begin{align*}
\partial_{t} p_{e}^{\delta}+\alpha_{e} \partial_{x} q_{e}^{\delta} & =\delta_{e, 1}^{\Omega}-\partial_{t} \bar{p}^{\delta}-\alpha_{e} \partial_{x} \bar{q}^{\delta} \\
\partial_{t} q_{e}^{\delta}+\beta_{e} \partial_{x} p_{e}^{\delta} & =\delta_{e, 2}^{\Omega}-f_{e}\left(p_{e}^{\delta}+\bar{p}_{e}^{\delta}, q_{e}^{\delta}+\bar{q}_{e}^{\delta}\right)-\partial_{t} \bar{q}^{\delta}-\beta_{e} \partial_{x} \bar{p}^{\delta}
\end{align*}
$$

for $e \in \mathcal{E}$ and $\left(1^{\prime}\right)-\left(3^{\prime}\right)$ with zero right hand side. The non-linear function f_{e} is given by the right hand side from the 2 nd equation of (ISO2).

Example:

Perturbation Analysis

After homogenization of both systems, the perturbation analysis reduces to the analysis of

$$
\mathfrak{u}^{\prime}-\mathfrak{u}^{\delta^{\prime}}+\mathcal{B}\left(\mathfrak{u}-\mathfrak{u}^{\delta}\right)+\mathcal{D}\left(\mathfrak{u}, \mathfrak{u}^{\delta}, t\right)=\mathcal{F}\left(\delta^{\Omega}, \delta^{\Gamma}, \delta^{\Gamma^{\prime}}\right) \quad \text { in } \mathcal{H}
$$

in an appropriate function space \mathcal{H}. Here $\mathfrak{u}=(p, q), \mathfrak{u}^{\delta}=\left(p^{\delta}, q^{\delta}\right)$.
Theorem 1 (A priori estimates). Let the boundary data p^{Γ}, q^{Γ} and the perturbations δ^{Ω} and δ^{Γ} and their first derivatives w.r.t. time be bounded. And let the velocity of each pipe $e \in \mathcal{E}$ be bounded by $\left|\nu_{e}\right| \leq \bar{\nu}$. Then (p, q) and $\left(p^{\delta}, q^{\delta}\right)$ and their first derivatives w.r.t. time are bounded as well.

Theorem 2 (Perturbation result). If the assumptions of Theorem 1 hold, we can derive that

$$
\max _{\tau}\left\|\mathfrak{u}-\mathfrak{u}^{\delta}\right\|_{L^{2}}^{2} \leq K\left(\left\|\delta_{0}\right\|_{L^{2}}^{2}+\max _{\tau}\left\|\delta^{\Omega}\right\|_{L^{2}}^{2}+\max _{\tau}\left|\delta^{\Gamma}\right|\right)
$$

