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PDAE Model

Gas transport through a network G = (V , E) can be described by a set of hyper-

bolic PDEs

∂t pe + αe∂x qe = 0

∂t qe + βe∂x pe = −γe
qe|qe|

pe

− σepe

e ∈ EP (ISO2)

where pe and qe are the pressure and mass flow, αe , βe are pipe parameter

dependent, γe is a friction term and σe accounts for a possible slope. Additional

elements like compressors

Compressor-characteristics.

Had ,e = κ
[

(

pin,e/pout ,e

)ζ
− 1

]

Had ,e = Φ(Qe , ne ; An
e)

ηad ,e = Φ(Qe , ne ; A
η
e )

Qe = c2qe/pin,e

e ∈ EC (COM)

with control pout ,e = pset ,e or qe = qset ,e

valves pin,e = pout ,e qe = 0 e ∈ ES (VAL-ON/OFF)

resistors pin,e − pout ,e = ξe
qe|qe|

pin,e

e ∈ ER (RES)

are coupled to the pipes by a set of balance equations for the flows and pairwise

mappings for the pressures

AR qP ,R + AL qP ,L + AC qC + AS qS + AR qR = qΓ (1)

B⊤
R pP ,R + B⊤

L pP ,L + B⊤
C

pC + B⊤
S

pS + B⊤
R

pR = 0. (2)

pe,L = pΓ
u e ∈ δ−(u), u ∈ V+ (3)

with A = [AR AL AC AS AR] the incidence matrix of G and B ∈ ker |A|.

Perturbation Behaviour

⊲ Depending on the semi-discretization in space of system (ISO2) & (1)-(3),

the resulting DAEs may be of arbitrary high index.

⊲ Solutions may not reflect the properties of the PDAE system correctly.

Example: V = {u1, ... , u6} V+ = {u1} E = {e1, ... , e7}

u1 u2

u3

u4

u5 u6

δq
u6

= 10−4 sin(106t) kg/s
Mass inflow at u1,

max ∆x = 40 km.

Mass inflow at u1,

max ∆x = 2 km.

Extension to General Networks

⊲ This approach seems applicable to more general gas networks e.g., with

compressors (COM)

⊲ Analysis of hyperbolic PDAEs of the form

u
′ + Bu + D(u, z, t) = 0 in H

g(z, t) = 0

⊲ g possesses some properties that have been proven useful in the treatment

of elliptic and parabolic PDAEs of that form.

Perturbed Problem

We are interested in the behaviour of a solution of a pipe network described by

equations (ISO2) and (1)-(3) regarding perturbations in these equations.

∂t p
δ
e + αe∂x qδ

e = δΩe,1

∂t q
δ
e + βe∂x pδ

e = δΩe,2 − γe
qδ

e |q
δ
e |

pδ
e

− σepδ
e

e ∈ EP (ISO2′)

AR qδ
P ,R + AL qδ

P ,L = qΓ + δq B⊤
R pδ

P ,R + B⊤
L pδ

P ,L = δp
(1′) (2′)

pδ
e,L = pΓ

u + δp
u e ∈ δ−(u), u ∈ V+. (3′)

Homogenization

Choosing homogenization functions for (p, q) and (pδ , qδ)

q̄δ
e :=

{

x
ℓe

(qΓ
u + δq

u ) e = e1

0 else
p̄δ

e :=











ℓe−x

ℓe
(pΓ

u + δp
u,e) u ∈ V+

ℓe−x

ℓe
δp

u,e u /∈ V+, e ∈ T
ℓe−x

ℓe
δp

u,e + x
ℓe
δp

v ,e else

for e = (u, v ) ∈ E , δ+(u) = {e1, ... , enu}.

If (p̂δ , q̂δ) solves (ISO2′) with (1′) - (3′), then (pδ , qδ) = (p̂δ − p̄δ , q̂δ − q̄δ)

solves

∂t p
δ
e + αe∂x qδ

e = δΩe,1 − ∂t p̄
δ − αe∂x q̄δ

∂t q
δ
e + βe∂x pδ

e = δΩe,2 − fe(pδ
e + p̄δ

e , qδ
e + q̄δ

e ) − ∂t q̄
δ − βe∂x p̄δ

(ISO2′′)

for e ∈ E and (1′) - (3′) with zero right hand side. The non-linear function fe is

given by the right hand side from the 2nd equation of (ISO2).

Example:

u v w
e1

e2

e3

V+ = {u} T = {e1, e2}

δ+(v ) = {e1} δ+(w) = {e2, e3}

q̄δ
e1

=
x

ℓ1

(qΓ
v + δq

v ) q̄δ
e2

=
x

ℓ2

(qΓ
w + δq

w ) q̄δ
e3

= 0

p̄δ
e1

=
ℓ1 − x

ℓ1

(pΓ
u + δp

u1) p̄δ
e2

=
ℓ2 − x

ℓ2

δp
w2 p̄δ

e3
=
ℓ3 − x

ℓ3

δp
w3 +

x

ℓ3

δp
v3

Perturbation Analysis

After homogenization of both systems, the perturbation analysis reduces to the

analysis of

u
′ − u

δ′ + B(u− u
δ) + D(u, uδ , t) = F (δΩ, δΓ , δΓ

′

) in H

in an appropriate function space H. Here u = (p, q), uδ = (pδ , qδ).

Theorem 1 (A priori estimates). Let the boundary data pΓ
, qΓ

and

the perturbations δΩ and δΓ and their �rst derivatives w.r.t. time

be bounded. And let the veloity of eah pipe e ∈ E be bounded by

|νe| ≤ ν̄. Then (p, q) and (pδ , qδ) and their �rst derivatives w.r.t.

time are bounded as well.

Theorem 2 (Perturbation result). If the assumptions of Theorem 1

hold, we an derive that

max
τ

‖u− u
δ‖2

L2 ≤ K

(

‖δ0‖
2
L2 + max

τ
‖δΩ‖2

L2 + max
τ

|δΓ |
)


