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Abstract

Our goal is the development of a theoretical basis for nodal control

problems with hyperbolic PDEs and stochastic boundary data. Nodal

control means the single control elements are distributed in the net-

work.

Hereby, an adequate framework for the system dynamics based on

the actual stochastic is to be developed, risk neutral and risk averse

objective functions – motivated by applications – are to be considered,

the existence of optimal controls is to be proven and necessary opti-

mality conditions are to be derived. The analysis of the optimal value

function is not only required in the treatment of stochastic, but also

interesting from the viewpoint of parametric optimization.

Model

Isothermal Euler-Equations
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g gravitational constant

State Equation

p = RTz(p) · ρ

z(p) = 1 + αp

α slope in the linear model

for the compressibility factor

R specific gas constant

T temperature
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Initial Situation

⊲ Optimization on gas networks almost exclusively for the

stationary case.

Simulation on gas networks has been done for dynamic

models.

⊲ Stochastic optimization well developed for the

finite-dimensional (mixed-integer) linear case.

Only singular results for the nonlinear infinite-dimensional

case.

⊲ Combination of stochastic optimization with boundary

control of PDEs is pioneering.

⊲ Existence of regular solutions on arbitrary networks unclear.

Challenges

⊲ In general, regular solutions of hyperbolic systems can

break down after finite time.

⊲ Uncertain boundary data and its interactions with the

decisions have to be considered in the optimal control

problem.

⊲ Existence of regular system states and optimal controls is

investigated on graphs.

Work schedule

WT 1: Model choice

⊲ Stochastic: Nonanticipativity as new constraint, risk neutral

or risk averse measure

⊲ PDE: Hyperbolic PDEs with stochastic boundary data

WT 2: Well-posedness of the system dynamics

⊲ Semilinear hyperbolic relaxation

WT 3 : Regularity of solutions

⊲ Existence of regular solutions for hyperbolic quasilinear

PDEs

WT 4: Optimal control for stochastic boundary data

⊲ Existence of optimal controls

WT 5: Optimality conditions

⊲ Stochastic nature of the objective function, adjoint equation,

convergence of optimality conditions

WT 6 : Sensitivity analysis

⊲ Lipschitz-continuity and one-sided differentiability of the op-

timal value function
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