Subproject C04

TRR 154

Mathematical modeling, imulation, and optimization using the example of gas networks

Hierarchical Galerkin methods for hyperbolic problems with parabolic asymptotics

TECHNISCHE UNIVERSITÄT DARMSTADT

Technische Universität Darmstadt

www.tu-darmstadt.de

Herbert Egger Thomas Kugler Jens Lang

Main goals

Asymptotic preserving numerical schemes for hyperbolic problems.

- > hyperbolic balance laws with stiff relaxation
- > convergence to equilibrium and large time behaviour
- ▷ uniformly stable and asymptotic preserving numerical schemes
- > a-posteriori error analysis and sensitivity calculus

Model problem

Gas transport in pipelines is modeled by

$$\partial_t \rho^e + \partial_x q^e = 0, \qquad \text{on } e \in \mathcal{E},$$
(1)

$$\partial_t q^e + \partial_x p^e = -d^e q^e, \qquad \text{on } e \in \mathcal{E},$$
(2)

with $d^e = d^e(\rho^e, q^e) = \lambda/(2D)|q|/\rho$ and $p(\rho) = c^2\rho$. Balance laws across junctions yield

$$\rho^{e}(v) = \rho^{e'}(v), \quad \text{for all } e, e' \in \mathcal{E}(v), \ v \in \mathcal{V}_{0}, \quad (3)$$
$$\sum_{e \in \mathcal{E}(v)} n^{e}(v)q^{e}(v) = 0, \quad \text{for all } v \in \mathcal{V}_{0}. \quad (4)$$

Input/boundary condition described by pressure at the ports

$$\rho^{e}(\mathbf{v}) = u_{\mathbf{v}}, \quad \text{for all } \mathbf{v} \in \mathcal{V}_{\partial}. \tag{5}$$

Example network:

Physical properties:

- (P1) dissipation of energy $E = \frac{1}{2}(||\rho||^2 + ||q||^2)$, i.e. $\frac{d}{dt}E = -(dq, q) - (q, nu)_{\mathcal{V}_{\partial}}$
- (P2) conservation of mass: $\frac{d}{dt} \int_{\mathcal{E}} \rho \, dt = \sum_{v \in \mathcal{V}_{\partial}, e \in \mathcal{E}(v)} n^{e}(v) q^{e}(v);$
- (P3) exponential convergence to equilibrium when $u \equiv 0$;
- (P4) existence of unique steady states for the stationary problem.

Galerkin semidiscretization

Variational characterization: Any solution of (1)-(5) satisfies

$$(GD) \begin{cases} (a^{e}\partial_{t}\rho(t),\mu) + (\partial'_{x}q(t),\mu) = 0, \\ (b^{e}\partial_{t}q(t),\nu) - (\rho(t),\partial'_{x}\nu) + (dq(t),\nu) = (u(t),n\nu)_{\mathcal{V}_{\partial}}, \end{cases}$$

for all $\mu \in L^2(\mathcal{E})$ and $v \in H(div) = \{\tau : \tau^e \in H^1(e) \quad \forall e \in \mathcal{E} \text{ and } (4) \text{ holds} \}.$

Conforming Galerkin discretization (GD_{*h*}): Find $\rho_h \in M_h \subset L^2(\mathcal{E})$ and $q_h \in V_h \subset H(div)$, such that variational principle holds for all $\mu_h \in M_h$ and $v_h \in V_h$.

Results

Theorem. Assume that M_h , V_h satisfy $(A \ 1_h) M_h = \partial'_x V_h$ $(A \ 2_h) \{r: \partial'_x r = 0\} \subset V_h$

(1100) [1100] = 0]

 $(A3_h)$ 1 \in M_h

Then any solution of (GD_h) fulfills (P1)-(P4).

Further results:

- \triangleright mixed fem of arbitrary order satisfying (A1_h)-(A3_h)
- > stability preserving time-discretization of arbitrary order possible;
- \triangleright uniform stability and error estimates for fully discrete schemes

$$\begin{aligned} \|\rho_h^n - \rho(t^n)\| + \|q_h^n - q(t^n)\| &\leq C(h^\rho + \Delta t^\kappa) \quad \text{for all} \quad n \geq 0\\ \|\rho_h^n - \rho_h^\infty\| + \|q_h^n - q_h^\infty\| &\leq Ce^{-\alpha t^n} \end{aligned}$$

with constants C, α independent of $n, h, \Delta t$.

Structure preserving model reduction

Model reduction by Galerkin projection can be interpreted as

Reduced model in algebraic form

$$\widehat{(ALG)} \begin{cases} V_1^{\top} M_1 V_1 \dot{z}_1 + V_1^{\top} G V_2 z_2 = 0, \\ V_2^{\top} M_2 V_2 \dot{z}_2 - V_2^{\top} G^{\top} V_1 z_1 + V_2^{\top} D V_2 z_2 = V_2^{\top} B_2 u, \end{cases}$$

Theorem (Model reduction). Assume that the coarse spaces M_H , V_H respectively projection matrices V_1 , V_2 satisfy

$(A1_H) M_H = \partial'_x V_H$	$(\widehat{A1}) R(M_1 V_1) = \mathcal{R}(GV_2)$
$(A\mathcal{Z}_{H}) \{ \mathbf{v} : \partial'_{\mathbf{x}}\mathbf{v} = 0 \} \subset V_{H}$	$(\widehat{A2}) \ N(G) \subset \mathcal{R}(V_2)$
$(A3_H) \ 1 \in M_H$	$(\widehat{A3}) o_1 \in \mathcal{R}(V_2)$

Then any solution of the Galerkin approximation (GD_H) and its algebraic representation \widehat{ALG} satisfies (P1)-(P4).

Construction of projection matrices V_1, V_2 :

- 1. Create subspaces $\mathbb{W}_1, \mathbb{W}_2$ via Krylov iteration.
- 2. Choose finite dimensional spaces $\mathbb{Z}_1,\mathbb{Z}_2,$ such that

 $\mathbb{V}_1 = \mathbb{W}_1 + \mathbb{Z}_1$ and $\mathbb{V}_2 = \mathbb{W}_2 + \mathbb{Z}_2$

satisfy the compatibility conditions $(\widehat{A1}) - (\widehat{A3})$.

References:

- Egger, Kugler: Damped wave systems on networks: Exponential stability and uniform approximations. arXive:1605.03066.
- ▷ Egger, Kugler, Liljegren-Sailer, Marheineke: Model reduction for wave propagation on networks. In preparation.

