

Probabilistic Constrained Optimization on Gas Networks

Michael Schuster (FAU), Martin Gugat (FAU), Rüdiger Schultz (UDE)

July 27, ICSP 2023 Davis, CA

Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universität Duisburg-Essen (UDE)

Motivation

Natural Gas Transport

© U.S. Energy Information Administration

© European Hydrogen Backbone

Motivation

Probabilistic Constraints

Consider the optimization problem

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \mathbb{P}(g(x,\xi) \leq 0) \geq \alpha \end{array} \end{array}$$

with objective function f, constraint g, decision vector x, random variable ξ (with probability distribution and density function) and probability level α .

$$\mathbb{P}(g(x,\xi) \leq 0) = \int_{M(x)} \varrho_{g_{\xi}}(z) \ dz,$$

with

$$M(x) = \{ \omega \in \Omega \mid g(x, \xi(\omega)) \le 0 \}.$$

Motivation

Probabilistic Constraints

Consider the optimization problem

 $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \mathbb{P}(g(x,\xi) \leq 0) \geq \alpha \end{array} \end{array}$

with objective function f, constraint g, decision vector x, random variable ξ (with probability distribution and density function) and probability level α .

$$\mathbb{P}(g(x,\xi) \le 0) = \int_{M(x)} \varrho_{g_{\xi}}(z) \, dz,$$

with

$$M(x) = \{ \omega \in \Omega \mid g(x, \xi(\omega)) \le 0 \}.$$

Is there a "better" way to compute this probability?

Mathematical Modelling on Networks

- Consider a connected, directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with vertex set \mathcal{V} and set of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- We consider the stationary model (ISO4) for ideal gases on every edge $e \in \mathcal{E}$

(ISO4) for ideal gases

$$q_x = 0, \quad p_x = -\frac{c^2 \lambda^F}{2D} \frac{q|q|}{p}$$

Coupling conditions at the nodes:

Conservation of mass

$$\sum_{e \in \mathcal{E}_{-}(v)} q^{e} \left(\frac{D^{e}}{2}\right)^{2} \pi = b^{v} + \sum_{e \in \mathcal{E}_{+}(v)} q^{e} \left(\frac{D^{e}}{2}\right)^{2} \pi \quad \forall v \in \mathcal{V} \setminus \mathcal{V}_{0}$$

solution of (ISO4)

 $q(x) = const., \quad p^2(x) = p(0)^2 - \frac{c^2 \lambda^F}{2D} q|q| x$

Continuity in pressure

$$p^{e_1}(L^{e_1}) = p^{e_2}(0) \quad \forall e_1 \in \mathcal{E}_-(v), \ e_2 \in \mathcal{E}_+(v).$$

Mathematical Modelling on Networks

Boundary Conditions:

Inlet pressure

 $p^e(0) = p_0 \in \mathbb{R}_{\ge 0} \quad \forall e \in \mathcal{E}_+(v_0)$

Gas outflow

$$q^e(L^e) = b^v \in \mathbb{R}_{\ge 0} \quad \forall e \in \mathcal{E}_-(v)$$

 b^v represents the consumers gas demand

- Let $p \in \mathbb{R}^n$ be the vector of pressures at the nodes v_1, \cdots, v_n
- We assume box constraints for the pressures at the nodes: $p_i \in [p_i^{\min}, p_i^{\max}]$

Set of feasible loads

$(p,q) \in \mathbb{R}^{\times} \times \mathbb{R}^{\times}$ satisfies.	
 stationary semilinear isothermal Euler equations, 	
$M := \{ b \in \mathbb{R}^n_{>0} \mid \bullet \text{ inlet pressure and gas outflow,} \}$	
 conservation of mass and continuity in pressure, 	
pressure bounds.	

[Gugat, Hante, Hirsch-Dick, Leugering, 2015]: Stationary states in gas networks. Netw. Heterog. Media, 10(2): 295–320.

FAU

Gas Networks under Uncertainty

Assume that the consumers gas demand is random in the sense, that there is a random variable

 $\xi_b \sim \mathcal{N}(\mu, \Sigma),$

on an appropriate probability space. We identify *b* with the image $\xi_b(\omega)$ for $\omega \in \Omega$.

For a given inlet pressure, can we guarantee, that every consumer receives their demanded gas, s.t. the gas pressure in the network is neither too high nor too low, in at least $\alpha\%$ of all scenarios?

 $\mathbb{P}(\omega \in \Omega \mid \xi_b(\omega) \in M) \geq \alpha$

Gas Networks under Uncertainty

Assume that the consumers gas demand is random in the sense, that there is a random variable

 $\xi_b \sim \mathcal{N}(\mu, \Sigma),$

on an appropriate probability space. We identify *b* with the image $\xi_b(\omega)$ for $\omega \in \Omega$.

For a given inlet pressure, can we guarantee, that every consumer receives their demanded gas, s.t. the gas pressure in the network is neither too high nor too low, in at least $\alpha\%$ of all scenarios?

 $\mathbb{P}(\omega \in \Omega \mid \xi_b(\omega) \in M) \geq \alpha$

unknown set of feasible loads (grey)

set of feasible pressures (orange)

Kernel Density Estimation

Definition: Kernel Density Estimator

Let $\mathcal{Y} = \{y_1, \dots, y_N\} \subseteq \mathbb{R}^n$ be i.i.d. samples of the random variable Y, which has an absolutely continuous distribution function with probability density function ϱ . Let K be a kernel function. Then the kernel density estimator ϱ_N corresponding to the bandwidth $h \in (0, \infty)$ is defined as

$$p_N(z) = \frac{1}{Nh} \sum_{i=1}^N K\left(\frac{z-y_i}{h}\right)$$

[Gramacki 2018]: Nonparametric Kernel Density Estimation and its Computational Aspects. Springer International Publishing

Application of Kernel Density Estimation

- Let $\mathcal{B} = \{ b^{S,1}, \cdots, b^{S,N_{\mathsf{KDE}}} \} \subseteq \mathbb{R}^n_{\geq 0}$ be independent and identically distributed samples of the random variable ξ_b
- Let $\mathcal{P}_{\mathcal{B}} = \{ p(b^{S,1}), \cdots, p(b^{S,N_{\mathsf{KDE}}}) \} \subseteq \mathbb{R}^n$ be the corresponding pressures at the nodes (also independent and identically distributed)

Gaussian kernel

$$K(x) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x_{j}^{2}\right)$$

bandwidth matrix	
$H_{i,i} = h^2 \left(\Sigma_{N_{KDE}} \right)_{i,i}$ $h = \left(\frac{4}{(n+2)N_{KDE}} \right)^{\frac{1}{n+4}}$	

kernel density estimator

$$\varrho_{p,N_{\mathsf{KDE}}}(z) = \frac{1}{N_{\mathsf{KDE}} \det \sqrt{H_{j,j}}} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{\sqrt{H_{j,j}}}\right)^2\right)$$

[Schuster, Strauch, Gugat, Lang, 2022]: Probabilistic Constrained Optimization on Flow Networks. Optim. Eng. 23: 1–50

Application of Kernel Density Estimation

$$\begin{split} \mathbb{P}_{N_{\mathsf{KDE}}}(p \in P_{\min}^{\max}) &= \int_{P_{\min}^{\max}} \varrho_{p,N_{\mathsf{KDE}}}(z) \ dz \\ &= \int_{P_{\min}^{\max}} \frac{1}{N_{\mathsf{KDE}} \prod_{j=1}^{n} h_j} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{h_j}\right)^2\right) \ dz \\ &= \frac{1}{N_{\mathsf{KDE}} \prod_{j=1}^{n} h_j} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \int_{p_j^{\min}}^{p_j^{\max}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{h_j}\right)^2\right) \ dz_j \end{split}$$

Application of Kernel Density Estimation

$$\begin{split} \mathbb{P}_{N_{\mathsf{KDE}}}(p \in P_{\min}^{\max}) &= \int_{P_{\min}^{\max}} \varrho_{p,N_{\mathsf{KDE}}}(z) \, dz \\ &= \int_{P_{\min}^{\max}} \frac{1}{N_{\mathsf{KDE}} \prod_{j=1}^{n} h_j} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{h_j}\right)^2\right) \, dz \\ &= \frac{1}{N_{\mathsf{KDE}} \prod_{j=1}^{n} h_j} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^{n} \int_{p_j^{\min}}^{p_j^{\max}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{z_j - p_j(b^{S,i})}{h_j}\right)^2\right) \, dz_j \end{split}$$
Gauss error function:
$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp\left(-t^2\right) \, dt$$

probability via KDE

$$\mathbb{P}_{N_{\mathsf{KDE}}}(p \in P_{\min}^{\max}) = \frac{1}{N_{\mathsf{KDE}}2^n} \sum_{i=1}^{N_{\mathsf{KDE}}} \prod_{j=1}^n \left[\operatorname{erf}\left(\frac{p^{\max} - p_j(b^{S,i})}{\sqrt{2} h_j}\right) - \operatorname{erf}\left(\frac{p^{\min} - p_j(b^{S,i})}{\sqrt{2} h_j}\right) \right]$$

A Numerical Example

How good is the optimal deterministic solution in the probabilistic setting?

 $\mathbb{P}(b \in M(p_{det}^{\max})) \approx 35.4\%$

https://gaslib.zib.de/

The Isothermal Euler Equations

The isothermal Euler equations for ideal gases:

(ISO) $\rho_t + q_x = 0,$ $q_t + \left(c^2 p + \frac{q^2}{\rho}\right)_r = -\frac{\lambda^F}{2D} \frac{q|q|}{\rho}.$ Inlet density & Gas outflow $\rho(t,0) = \rho_0(t),$ q(t, L) = b(t).Initial condition $\rho(0, x) = \rho_{\rm ini}(x),$ $q(0, x) = q_{ini}(x).$

see Gugat and Ulbrich (2018): Lipschitz solutions of initial boundary value problems for balance laws. Math. Models Methods Appl. Sci., 28(5): 921-951

Time Dependent Uncertainty

Random Boundary Functions

• Write a function *f* as Fourier series

$$f(t) = \sum_{m=0}^{\infty} a_m^0(f) \ \psi_m(t)$$

• For random variables $\xi_m \sim \mathcal{N}(1,\sigma)$ define

$$f^{\omega}(t) = \sum_{m=0}^{\infty} \xi_m(\omega) \ a_m^0(f) \ \psi_m(t)$$

Time Dependent Uncertainty

• Write a function f as Fourier series

$$f(t) = \sum_{m=0}^{\infty} a_m^0(f) \ \psi_m(t)$$

• For random variables $\xi_m \sim \mathcal{N}(1, \sigma)$ define

$$f^{\omega}(t) = \sum_{m=0}^{\infty} \xi_m(\omega) \ a_m^0(f) \ \psi_m(t)$$

Time dependent probabilistic constraint

$$\mathbb{P}(f^{\omega} \in M(t) \quad \forall t \in [0,T]) \geq \alpha$$

"We want to guarantee that a percentage α of all possible random scenarios is feasible in every point in time $t \in [0, T]$."

Application of Kernel Density Estimation

• Let $\mathcal{B} = \{ b^{S,1}(t), \cdots, b^{S,N_{\mathsf{KDE}}}(t) \}$ be independent and identically distributed random boundary functions • Let $\mathcal{P}_{\mathcal{B}} = \{ \rho(t; b^{S,1}), \cdots, \rho(t; b^{S,N_{\mathsf{KDE}}}) \}$ be the corresponding densities at the end of the pipe

$$\mathbb{P}\left(\rho(t,L)\in\left[\rho^{\min},\rho^{\max}\right] \quad \forall t\in[0,T]\right) = \mathbb{P}\left(\min_{\substack{t\in[0,T]\\ t\in[0,T]}}\rho(t,L)\in\left[\rho^{\min},\rho^{\max}\right]\right)$$
• Let
$$\left\{\left[\frac{\rho(b_1):=\min_{t\in[0,T]}\rho(t;b^{S,1})}{\overline{\rho}(b_1):=\max_{t\in[0,T]}\rho(t;b^{S,1})}\right], \cdots, \left[\frac{\rho(b_{N_{\mathsf{KDE}}}):=\min_{t\in[0,T]}\rho(t;b^{S,N_{\mathsf{KDE}}})}{\overline{\rho}(b_{N_{\mathsf{KDE}}}):=\max_{t\in[0,T]}\rho(t;b^{S,N_{\mathsf{KDE}}})}\right]\right\} \subseteq \mathbb{R}^2 \text{ be a sample of the minimal and maximal densities in } [0,T]$$

Kernel density estimator for bandwidths h^{\min} and h^{\min}

$$\varrho_{p,N_{\mathsf{KDE}}}(z) = \frac{1}{N_{\mathsf{KDE}} \ h^{\min} \ h^{\max}} \sum_{i=1}^{N_{\mathsf{KDE}}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{z-\underline{\rho}(b_i)}{h^{\min}}\right)^2\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{z-\overline{\rho}(b_i)}{h^{\max}}\right)^2\right)$$

A Numerical Example

$ ho_0(t)$	$ ho^{ m min}$	С	λ^F	D	L	T	α
46.75 kg/m^3	34 kg/m^3	343 m/s	0.1	0.5 m	30 km	24 h	90%

Probabilistic Optimization

$$\begin{split} & \min_{\rho_{\text{prob}}^{\text{max}}} \quad \rho_{\text{prob}}^{\text{max}}, \\ & \text{s.t.} \quad \mathbb{P}\left(\left. \rho(t,L) \in \left[\rho^{\min}, \rho_{\text{prob}}^{\max} \right] \; \forall t \in [0,T] \right. \right) \geq 0.9. \\ & \Rightarrow \quad \rho_{\text{prob}}^{*,\max} = 42.49 \; kg/m^3 \end{split}$$

How good is the optimal deterministic solution in the probabilistic setting?

 $\mathbb{P}(b(t) \in M(t; p_{det}^{\max}) \quad \forall t \in [0, T]) \approx 50\%$

A Dynamic Gas Transport Model

References

- M. Gugat, R. Schultz, M. Schuster: Convexity and Starshapedness of Feasible Sets in Stationary Flow Networks. Netw. Heterog. Media 15(2), pp. 171–195, 2020
- M. Schuster: *Nodal Control and Probabilistic Constrained Optimization*. PhD thesis, FAU Erlangen-Nürnberg, Germany, 2021, https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/searchtype/latest/docId/410/start/2/rows/10
- M. Schuster, E. Strauch, M. Gugat, J. Lang: Probabilistic Constrained Optimization on Flow Networks. Optim. Eng. 23, 1–50, 2022

