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Mathematics of Gas Flow in Pipeline Networks - The TRR 154

TRR 154 - Mathematical modelling, simulation and optimization using the example of gas networks

» The “turnaround in energy policy” is currently in the main focus of public opinion. It concerns social, political and scientific aspects as the dependence on a reliable, efficient and affordable energy supply becomes
increasingly dominant. On the other side, the desire for a clean, environmentally consistent and climate-friendly energy production is stronger than ever.

» Gas Flow in Pipeline Networks covers various mathematical areas including modelling, simulation, optimization, network theory, control theory, uncertainty, mixed integer programming and much more. A deep
understanding of various topics and an intense collaboration is necessary to deal with problems and applications related to mathematics of gas transport in pipeline networks.

Mathematical Modelling of Gas Flow in Pipeline Networks Stochastic Collocation Method

p ga> pressure v gas velocity 9 gravitational constant » Let an optimal control u(t), inlet pressures py(t) and a ng-dimensional random gas outflow b*(¢) be

P gas density A/D pipe friction @ pipe slope given. We approximate the pressures p(t, z,b“) in the stochastic space by stochastic collocation on a
Isothermal Euler Equations Smolyak sparse grid with Clenshaw-Curtis nodes.
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‘ ‘ ‘ » The approximated pressures are given by the Smolyak formula with level £ > 0

Source: Inlet Pressure Compressor Station Sink: Gas Outflow S, [p(t,m, . )} _ Z Ci (u(il) D - ®u(in5)) [p(t,% , )}v
p(t) = mo(t) poutt) _ (o) (t) = () s
Pin(?) k+1 < i < ktng
where the U(m) for m = l,--- ,ng are the interpolation operators on one dimension.
Coupling Conditions
Conservation of Mass: Z(pv)in(t) = Z(pv)out(t), Continuity in Pressure:  pin = Pout Kernel Den5|ty Estimation
Optimal Compressor Control with Buffer Zones on Gas Networks > Let P = { pi(t), - pvpe(t) | € CV([0.T]: R") be an independent and identical distributed

sample of (time dependent) pressures at the nodes.

Let bounds for the pressures 0 < ppin < pPmax be given at every node. For € > 0 consider the optimal > Let P L= = { D, Dy } C R?™ be the sample of minimal and maximal pressures of P over
control problem time, i.e., B —KDbE
min _ f(u) _ | mingepo 7 px(?)
L2(0,T D, = ! : k=1,---, NkpE.
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pt + (pv)z =0 . i
s.t. 5 A . on every edge » Consider a multivariate Gaussian product kernel K : R R4 and a diagonal bandwidth matrix
(pv)t + (p + pv )x = —EWM — gpsin(a) H € R2"X21 given by
p(t) = po(t) on every source node | 2n | A o
(pv)(t) = b(t) on every sink node K(z) = n H =P ( 9 ZJ2 > and  Hj ;= h’ Xjgr h= ( ) )
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Z<pv>i”(t) - Z(pv)"“t(t) on every inner node where X is the covariance matrix of the sample ;nnfr“lx.
Pin :tpOUt » Kernel density estimation provides an approximation for the probability density function of the pressure
Pout(!) = u(t) for every compressor at the nodes given by
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Uncertainty in the Gas Network » Using the Gaussian error function erf, for the approximated probability we have
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» Due to the structure of the European gas market, the consumers gas demand can be estimated but the Py e (p(t) € | ™ p" | VE € [0,T]) = Z H erf > | —erf : .
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» We consider uncertain gas outflow b (¢) by randomizing the T — o _
Fourier series of the estimated gas demand b(t), i.e., st/ Probabilistic Robustness Check - Numerical Example

Probability that Pressure p in the Network is feasible resp. infeasible vs. Compressor Costs
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» Application to real network instance with data
close to reality from https://gaslib.zib.de/" c250ay 028bar 632bar 636 bar |
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» Randomized Fourier series preserve regularity, so for b € L?(0,T), that means we also have » Stochastic collocation increases speed of ’ e §
. ar =11.20
b* € LQ(Oa T') almost surely. computation enormously i [ Fo b oo o
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» Our aim is to compute the probability, that the pressure at the nodes corresponding to the random gas » Kernel density estimation provides information e Comprenos pte 11040
demand stays within the pressure bounds, i.e., for ¢ > 0 with corresponding optimal control u(t) we on the probability density function and allows - o
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compute the probability to compute derivatives of the probability Bufer Zones [bar]

P(p(t) € [ p™ p™™] Vvt e[0,7T]).
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