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Mathematics of Gas Flow in Pipeline Networks - The TRR 154

TRR 154 - Mathematical modelling, simulation and optimization using the example of gas networks
▶ The “turnaround in energy policy” is currently in the main focus of public opinion. It concerns social, political and scientific aspects as the dependence on a reliable, efficient and affordable energy supply becomes

increasingly dominant. On the other side, the desire for a clean, environmentally consistent and climate-friendly energy production is stronger than ever.

▶ Gas Flow in Pipeline Networks covers various mathematical areas including modelling, simulation, optimization, network theory, control theory, uncertainty, mixed integer programming and much more. A deep
understanding of various topics and an intense collaboration is necessary to deal with problems and applications related to mathematics of gas transport in pipeline networks.

Mathematical Modelling of Gas Flow in Pipeline Networks

p gas pressure v gas velocity g gravitational constant
ρ gas density λ/D pipe friction α pipe slope

Isothermal Euler Equations

ρt + (ρv)x = 0

(ρv)t +
(
p + ρv2

)
x = − λ

2D
ρv|v| − gρ sin(α)

v0 v1 v3 v4

Source: Inlet Pressure

p(t) = p0(t)

Sink: Gas Outflow

(ρv)(t) = b(t)

Compressor Station

pout(t)

pin(t)
= u(t)

Coupling Conditions

Conservation of Mass:
∑

(ρv)in(t) =
∑

(ρv)out(t), Continuity in Pressure: pin = pout

Optimal Compressor Control with Buffer Zones on Gas Networks

Let bounds for the pressures 0 < pmin < pmax be given at every node. For ε > 0 consider the optimal
control problem

min
u∈L2(0,T )

f (u)

s.t.
ρt + (ρv)x = 0

(ρv)t +
(
p + ρv2

)
x = − λ

2D
ρv|v| − gρ sin(α)

on every edge

p(t) = p0(t) on every source node

(ρv)(t) = b(t) on every sink node∑
(ρv)in(t) =

∑
(ρv)out(t)

pin = pout
on every inner node

pout(t)

pin(t)
= u(t) for every compressor

p(t) ∈
[
pmin + ε, pmax − ε

]
∀t ∈ [0, T ] on every node

Uncertainty in the Gas Network

▶ Due to the structure of the European gas market, the consumers gas demand can be estimated but the
exact demand is uncertain.

▶ We consider uncertain gas outflow bω(t) by randomizing the
Fourier series of the estimated gas demand b(t), i.e.,

bω(t) =

∞∑
m=0

ξm(ω) a
0
m ψm(t),

a0m =

∫ T

0
b(t) ψm(t), ψm(t) =

√
2

T
sin

((
π

2
+mπ

)
t

T

)
.
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▶ Randomized Fourier series preserve regularity, so for b ∈ L2(0, T ), that means we also have
bω ∈ L2(0, T ) almost surely.

▶ Our aim is to compute the probability, that the pressure at the nodes corresponding to the random gas
demand stays within the pressure bounds, i.e., for ε > 0 with corresponding optimal control u(t) we
compute the probability

P
(
p(t) ∈

[
pmin, pmax ] ∀t ∈ [0, T ]

)
.

Stochastic Collocation Method

▶ Let an optimal control u(t), inlet pressures p0(t) and a nS-dimensional random gas outflow bω(t) be
given. We approximate the pressures p(t, x, bω) in the stochastic space by stochastic collocation on a
Smolyak sparse grid with Clenshaw-Curtis nodes.

▶ For a multi-index i ∈ NnS and a natural number
k ∈ N we define the constant

ci = (−1)k+nS−|i|
(

nS − 1
k + nS − |i|

)
.

Chapter 5 Adaptive Multi-Level Stochastic Collocation Method

In Figure 5.1, we compare the grid of the isotropic Smolyak interpolant Sw with the one of
the corresponding full tensor product T(w+1,w+1). We consider the Clenshaw-Curtis nodes (see
Subsection 5.1.5), a two-dimensional parameter space Γ = [−1, 1]2 and the level w = 5. The
tensor grid contains 332 = 1089 points and the grid of the Smolyak formula, also called sparse
grid, contains only 145 points. Hence, a significant reduction of the number of collocation points
is achieved. Note that the Smolyak interpolant has a lower polynomial exactness than the
full tensor product, see Subsection 5.1.3 and Figure 5.2. However, this disadvantage is usually
compensated by the reduction in computation time.
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Figure 5.1: Collocation points used for the Smolyak formula of level w = 5 (left). Corresponding
tensor grid T(6,6) with 33 points in each direction (right). In both cases, Clenshaw-Curtis nodes
are used.

5.1.2 General Sparse Grid Construction

One drawback of the isotropic Smolyak interpolant is that it handles all stochastic dimensions
equally by using the same collocation points in each dimension. Therefore, the number of col-
location points increases quickly with the Smolyak level w for higher dimensions N , but still
significantly slower than in the case of the full tensor product. If coarser refinements are already
sufficient for some dimensions, this approach is inefficient because more collocation points than
required are used in these dimensions. Consequently, function evaluations and thus computation
time could be saved. One approach to take a varying influence of the stochastic dimensions on
the function f into account is the anisotropic Smolyak formula, see for example [80] for elliptic
PDEs. Each dimension is separately weighted by multiplying each index in with a positive weight
an ∈ R+ so that the multi-indices have to satisfy |a · i| = a1i1 + · · ·+ aN iN ≤ w +N . However,
we need some a priori knowledge about the function f and the possible anisotropy in order to
choose the weighting parameters an appropriately. In order to allow more general anisotropic
structures, Gerstner and Griebel [38] presented a generalized sparse grid construction using a set
of multi-indices i ∈ Λ such that the telescoping sum expansion of the general sparse grid formula
remains valid and no interpolation rule is skipped in between.

Definition 5.2 (Downward Closed Index Set)
A multi-index set Λ ⊂ NN+ is called downward closed or admissible, if

∀i ∈ Λ : i− ej ∈ Λ for all j = 1, . . . , N with ij > 1.
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▶ The approximated pressures are given by the Smolyak formula with level k > 0

Sk
[
p(t, x, · )

]
=

∑
i ∈ NnS

k+1 ≤ i ≤ k+nS

ci

(
U (i1) ⊗ · · · ⊗ U (inS)

)[
p(t, x, · )

]
,

where the U (im) for m = 1, · · · , nS are the interpolation operators on one dimension.

Kernel Density Estimation

▶ Let P =
{
p1(t), · · · , pNKDE

(t)
}
⊆ C0

(
[0, T ];Rn

)
be an independent and identical distributed

sample of (time dependent) pressures at the nodes.

▶ Let Pmax
min =

{
p
1
, · · · , p

NKDE

}
⊆ R2n be the sample of minimal and maximal pressures of P over

time, i.e.,

p
k
=

[
mint∈[0,T ] pk(t)
maxt∈[0,T ] pk(t)

]
, k = 1, · · · , NKDE.

▶ Consider a multivariate Gaussian product kernel K : R2n → R+ and a diagonal bandwidth matrix
H ∈ R2n×2n given by

K(z) =
1

(2π)n

2n∏
j=1

exp

(
− 1

2
z2j

)
and Hj,j = h2 Σj,j, h =

(
4

(2n + 2)NKDE

) 1
2n+4

,

where Σ is the covariance matrix of the sample Pmax
min .

▶ Kernel density estimation provides an approximation for the probability density function of the pressure
at the nodes given by

ρp,NKDE
(z) =

1

NKDE
∏2n
j=1

√
Hj,j

NKDE∑
i=1

2n∏
j=1

1√
2π

exp

(
− 1

2

(zj − p
i,j√

Hj,j

)2
)
.

▶ Using the Gaussian error function erf, for the approximated probability we have

PNKDE

(
p(t) ∈

[
pmin, pmax ] ∀t ∈ [0, T ]

)
=

1

NKDE 22n

NKDE∑
i=1

2n∏
j=1

[
erf

(
pmax
j − p

i,j√
2 Hj,j

)
−erf

(
pmin
j − p

i,j√
2 Hj,j

) ]
.

Probabilistic Robustness Check - Numerical Example

▶ Application to real network instance with data
close to reality from https://gaslib.zib.de/ :

▶ Stochastic collocation increases speed of
computation enormously

▶ Kernel density estimation provides information
on the probability density function and allows
to compute derivatives of the probability
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