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Motivation and context

· · ·

optimization problem Nash equilibrium problem

bilevel problem multi-leader-follower problem

I Consider a system of coupled optimization problems.
I All optimization problems have to be solved simultaneously.
I Applications e.g. in energy markets, traffic flow, shared resource allocation.
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Basic Terminology

· · ·
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Example: Cournot duopoly

Problem:
max
xi≥0

fi (x1, x2) = p(x1, x2) · xi − ci (xi) ∀i = 1, 2

I We consider two firms i = 1, 2.
I Each firm i chooses its output xi ≥ 0 and tries to maximize its gain.
I The market price depends on the total supply, i.e. on x1 + x2.

Equilibrium: A solution x∗ = (x∗1, x
∗
2) should satisfy

x∗1 = argmax
x1≥0

f1 (x1, x∗2),

x∗2 = argmax
x2≥0

f2 (x∗1, x2).
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Nash equilibrium problems (NEP)

Definition
A Nash equilibrium problem (NEP) consists of
I a set {1, . . . ,N} of finitely many players,
I strategy sets Xi ⊆ ℝni for every player i = 1, . . . ,N,
I payoff functions fi : X → ℝ for every player i = 1, . . . ,N.

Each player i tries to solve the problem
min
xi

fi (x1, . . . , xi−1, xi, xi+1, . . . , xN) s.t. xi ∈ Xi .

Remarks:
I For theoretical purposes we consider only minimization problems and in economic applications often

maximization problems.
I X := X1 × . . . × XN ⊆ ℝn denotes the Cartesian product of all strategy sets.
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Nash equilibria (NE)

Definition
A vector x∗ = (x∗1, . . . , x

∗
N) is called a Nash equilibrium (NE), if for all players i = 1, . . . ,N

I the strategy x∗i ∈ Xi is feasible and
I optimal in the sense that

fi (x∗i , x
∗
−i) ≤ fi (xi, x∗−i) ∀xi ∈ Xi .

Remarks:
I In a Nash equilibrium, unilateral deviations do not improve a player’s payoff.
I We use x−i as a shorthand for the opponents’ strategies, i.e. x−i = (x1, . . . , xi−1, xi+1, . . . , xN).
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Characterizing Nash equilibria using best responses

I Given opponents’ strategies x−i, we define the best response map of player i as
Si (x−i) = argmin

xi∈Xi
fi (xi, x−i).

I Given a strategy vector x, the best response map is defined as
S(x) = (S1 (x−1), . . . , SN (x−N)).

Lemma
A strategy vector x∗ = (x∗1, . . . , x

∗
N) is a Nash equilibrium if and only if it is a �xed point of the best response map,

meaning
x∗ ∈ S(x∗).

Nash Equilibrium Problems • A. Schwartz • Seite 7



Exercise: Nash equilibria of a Cournot duopoly

Consider the Cournot duopoly
max
xi≥0

fi (x1, x2) = p(x1, x2) · xi − c · xi
with p(x1, x2) = a − b(x1 + x2) and a > c > 0, b > 0 and compute all Nash equilibria (x∗1, x

∗
2).
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Existence Results for NEPs

I Existence using Best Responses
I Existence using Variational Inequalities

· · ·
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Kakutani’s fixed point theorem for set-valued maps

Theorem (Kakutani’s fixed point theorem)

Let X ⊆ ℝn be nonempty, compact and convex and F : X ⇒ X a closed set-valued map such that F (x) is nonempty
and convex for all x ∈ X. Then F has a �xed point, i.e. there is an x∗ ∈ X such that x∗ ∈ F (x∗).

Definition
Let X ⊆ ℝn. A set-valued map F : X ⇒ ℝn is called closed, if for all convergent sequences (xk)k →X x∗ and
(yk)k → y∗ with yk ∈ F (xk) for all k ∈ ℕ we have y∗ ∈ F (x∗).

Remarks:
I Kakutani’s fixed point theorem is a generalization of Brouwer’s fixed point theorem to set-valued maps.
I Closedness of the set-valued map replaces the continuity assumption in Brouwer’s fixed point theorem.

Nash Equilibrium Problems • A. Schwartz • Seite 10



Existence theorem of Nikaido and Isoda

Theorem (Existence theorem of Nikaido and Isoda)

Assume that the strategy sets Xi ⊆ ℝni are nonempty, compact and convex and payo� functions fi : X → ℝ are
continuous in x and (quasi)convex in xi for every �xed x−i for all i = 1, . . . ,N. Then there exists at least one Nash
equilibrium.

Remarks:
I A function f : X → ℝ is quasiconvex on a convex set X ⊆ ℝn, if for all x, y ∈ X and all c ∈ (0, 1) we have

f (cx + (1 − c)y) ≤ max{f (x), f (y)}.
I Quasiconvexity is a generalization of convexity, which can be characterized by the property that all

sublevel sets of f are convex.
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Exercise: Existence theorem of Nikaido and Isoda

Prove the existence theorem of Nikaido and Isoda.
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Interlude: Optimality condition for a single optimization problem

Problem:
min
x∈X

f (x)
with X ⊆ ℝn convex and f : X → ℝ continuously differentiable (on an open superset of X).

Lemma

(a) Let x∗ ∈ X be a local minimum of f . Then
∇f (x∗)T (x − x∗) ≥ 0 ∀x ∈ X .

(b) Let f be (pseudo)convex on X and x∗ ∈ X with
∇f (x∗)T (x − x∗) ≥ 0 ∀x ∈ X .

Then x∗ is a global minimum of f on X.
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Variational inequality problem (VIP)

Definition
Let X ⊆ ℝn be nonempty, closed, and convex and F : X → ℝn. Then a variational inequality problem (VIP)
is the task to find a solution x∗ ∈ X with

F (x∗)T (x − x∗) ≥ 0 ∀x ∈ X .
We denote this problem by VIP(X , F).

Remarks:
I A continuously differentiable function f : X → ℝ is pseudoconvex on a convex set X ⊆ ℝn, if for all

x, y ∈ X we have
∇f (x)T (y − x) ≥ 0 =⇒ f (y) ≥ f (x).

I Solving a pseudoconvex optimization problem is equivalent to solving VIP(X ,∇f ), see previous slide.
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Exercise: KKT conditions and variational inequality problems

The KKT conditions for the nonlinear optimization problem
min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

with f : ℝn → ℝ, g : ℝn → ℝm and h : ℝn → ℝp are
∇f (x) + ∇g(x)𝜆 + ∇h(x)𝜇 = 0,
0 ≤ −g(x) ⊥ 𝜆 ≥ 0, h(x) = 0

with x ∈ ℝn and multipliers 𝜆 ∈ ℝm, 𝜇 ∈ ℝp.
Rewrite the KKT conditions as a variational inequality problem.
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Exercise: Variational inequality problems and projections

Let X ⊆ ℝn be nonempty, closed, and convex and F : X → ℝn.
Show that x∗ solves VIP(X , F) if and only if x∗ is a fixed point of H(x) := PX (x − 𝛾F (x)) with 𝛾 > 0.
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From Nash equilibrium problem to variational inequality problem

I Recall that in a NEP every player i = 1, . . . ,N solves the problem
min
xi∈Xi

fi (xi, x−i).

I If Xi is convex and xi ↦→ fi (xi, x−i) is pseudoconvex for fixed x−i, then the problem of player i is
equivalent to the VIP

∇xi fi (xi, x−i)T (xi − x∗i ) ≥ 0 ∀xi ∈ Xi .

I Defining X := X1 × . . . × XN and

F (x) :=
©­­«
∇x1 f1 (x1, x−1)

...
∇xN fN (xN, x−N)

ª®®¬ ,
we see that — under the given assumptions — the NEP is equivalent to VIP(X , F).

Remarks:
I Instead of having to solve N optimization problems simultaneously, we can solve one joint VIP.
I This observation is useful for existence results and solution algorithms.
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Existence results for variational inequality problems

Theorem
Let X ⊆ ℝn be nonempty, closed and convex and F : X → ℝn.
(a) If F is continuous and X bounded, then VIP(X , F) has at least one solution.
(b) If F is (pseudo)monotone, then the solution set of VIP(X , F) is convex (possibly empty).
(c) If F is strictly monotone, then VIP(X , F) has at most one solution (possibly none).
(d) If F is uniformly monotone, then VIP(X , F) has at exactly one solution.

Remarks:
I Part (a) follows from Brouwer’s fixed point theorem.
I A function F : X → ℝn ismonotone, if for all x, y ∈ X we have (F (x) − F (y))T (x − y) ≥ 0.
I If F : X → ℝn is differentiable, then it is monotone if and only if F ′(x) is positive semidefinite on X .
I Uniform monotonicity is also called strong monotonicity (not to be confused with strict monotonicity).
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Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case X := X1 × . . . × XN and

F (x) :=
©­­«
∇x1 f1 (x1, x−1)

...
∇xN fN (xN, x−N)

ª®®¬ ,

Conditions on X:
I X is nonempty/convex/closed/bounded if and only if all Xi are nonempty/convex/closed/bounded.

Conditions on F:
I If xi ↦→ fi (xi, x−i) is sufficiently smooth, then the following are equivalent:

I xi ↦→ fi (xi , x−i) is convex on Xi
I xi ↦→ ∇xi fi (xi , x−i) is monotone on Xi
I xi ↦→ ∇2

xixi fi (xi , x−i) is positive semidefinite on Xi
I Unfortunately, monotonicity of the components ∇xi fi (xi, x−i) is not enough to ensure monotonicity of F.
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Exercise: Existence results for a Cournot oligopoly

Consider the Cournot oligopoly
max
xi≥0

fi (x1, x2) = p(x) · xi − ci · xi
with p(x) = a − b

∑N
j=1 xj and a, b, ci > 0 for i = 1, . . . ,N. What do the existence results tell us about this NEP?
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Generalization of NEPs

· · ·
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Example: Modified Cournot duopoly

Problem:
max
xi

fi (x1, x2) = p(x1, x2) · xi − cxi s.t. xi ≥ 0, x1 + x2 ≤ C

with p(x1, x2) = a − b(x1 + x2) and a, b, c, C > 0.

Examples for such shared constraints are
I shared network capacities,
I shared emission caps,
I market clearing constraints.

Challenge: Shared or coupled constraints to not fit in our current NEP framework.
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Generalized Nash equilibrium problems

Definition
A generalized Nash equilibrium problem (GNEP) consists of
I a set {1, . . . ,N} of finitely many players,
I strategy set maps Xi : ℝn−ni ⇒ ℝni for every player i = 1, . . . ,N,
I payoff functions fi : ℝn → ℝ for every player i = 1, . . . ,N.

Each player i tries to solve the problem
min
xi

fi (xi, x−i) s.t. xi ∈ Xi (x−i).

Remarks:
I For a given strategy vector x define the set of feasible reactions as Ω(x) := X1 (x−1) × . . . × XN (x−N).
I Only fixed points x∗ ∈ Ω(x∗) can be solutions of the GNEP.
I Shared constraints result in a joint feasible set X ⊆ ℝn such that Xi (x−i) = {xi | (xi, x−i) ∈ X}.
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Exercise: Feasible reactions on a joint feasible set

Consider a GNEP with N = 2 players and the joint feasible set
X = {x ∈ ℝ2 | x21 + x

2
2 ≤ 1}.

Determine the set of feasible reactions Ω(x) to the following strategy vectors:
x = (0, 0), x = (0, 1), x = (−1,−1)
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Normalized Nash equilibria on a joint feasible set

Definition
Consider a generalized Nash equilibrium problem with N players and a joint feasible set X . A point x∗ ∈ X is
called a normalized Nash equilibrium, if it satisfies

Ψ(x∗, y) =
N∑︁
i=1

fi (x∗i , x
∗
−i) − fi (yi, x∗−i) ≥ 0 ∀y ∈ X .

Remarks:
I The function Ψ is called the Nikaido-Isoda function and can also be used in solution algorithms.
I A Nash equilibrium x∗ ∈ X is characterized by Ψ(x∗, y) ≥ 0 for all y ∈ Ω(x∗).
I For NEPs, there is no difference between Nash equilibria and normalized Nash equilibria.
I For GNEPs with a joint feasible set X , normalized Nash equilibria form a subset of its Nash equilibria.
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Exercise: Normalized Nash equilibria and multipliers

Consider a GNEP with N players, payoff functions fi and a joint feasible set
X = {x ∈ ℝn | g(x) ≤ 0, h(x) = 0}.

Assume that a suitable CQ holds in x∗ ∈ X . Compare the resulting KKT systems for
(a) x∗ being a Nash equilibrium of the GNEP,
(b) x∗ being a normalized Nash equilibrium of the GNEP.
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Some Solution Approaches

I Algorithms for NEPs
I Algorithms for VIPs
I Algorithms for GNEPs

· · ·
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Recap: Nash equilibrium problems (NEPs)

Definition
A Nash equilibrium problem (NEP) consists of N coupled optimization problems of the form

min
xi

fi (xi, x−i) s.t. xi ∈ Xi .

A Nash equilibrium (NE) is a strategy vector x∗ ∈ X = X1 × . . . × XN with
x∗i ∈ argmin

xi∈Xi
fi (xi, x∗−i) ∀i = 1, . . . ,N.
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Jacobi- and Gauss-Seidel method

Idea:
I Iteratively determine best responses of all players

xk+1i = argmin
xi∈Xi

fi (xi, xk−i).

I Jacobi relies on parallel updates, Gauss-Seidel on sequential updates.

Benefits:
I Easy to implement.
I Distributed/asynchronous version of Jacobi method possible.

Downsides:
I Convergence typically not guaranteed, iterates can cycle or diverge.
I Feasibility not guaranteed for GNEPs.
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Exercise: Gauss-Seidel method

Apply the Gauss-Seidel method to the following two NEPs:
(a) rock, paper, scissors
(b) Cournot duopoly with a > c > 0, b > 0:

min
xi≥0

fi (xi, x−i) = a − b · (x1 + x2) − c · xi ∀i = 1, 2
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Recap: Variational inequality reformulation of NEPs

I Consider a NEP
min
xi

fi (xi, x−i) s.t. xi ∈ Xi ∀i = 1, . . . ,N

with Xi ⊆ ℝni convex and xi ↦→ fi (xi, x−i) pseudoconvex for fixed x−i.
I Then NEP is equivalent to VIP(X , F) with X := X1 × . . . × XN and

F (x) :=
©­­«
∇x1 f1 (x1, x−1)

...
∇xN fN (xN, x−N)

ª®®¬ .

I Solving a variational inequality VIP(X , F) with X ⊆ ℝn nonempty, closed, convex and F : X → ℝn is
equivalent to computing a fixed point of

H(x) := PX (x − 𝛾F (x))
with 𝛾 > 0 arbitrary.
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Projection-based algorithms for VIPs

Idea:
I With some 𝛾 > 0 iteratively compute the projections

xk+1 := H(xk) = PX (xk − 𝛾F (xk)).
I Variations use halfsteps to update F (xk) before updating xk or vary the parameter 𝛾k .

Benefits:
I Requires only evaluations of F itself, no derivatives.
I In case X := X1 × . . . × XN the projections can be computed separately.

Downsides:
I Convergence can require strong assumptions concerning monotonicity and Lipschitz continuity of F.
I Convergence is typically slow.
I Computing the projections can be computationally expensive.
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Exercise: Projection method

Consider a NEP with Xi ⊆ ℝn be nonempty, closed and convex and xi ↦→ fi (xi, x−i) be (pseudo)convex.
How can the iterates generated by the projection method applied to the corresponding VIP(X , F) be
interpreted in terms of the original NEP?
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Some other algorithms for VIPs

Gap functions:
I The function g : X → ℝ ∪ {∞} with

g(x) := sup
y∈X

F (x)T (x − y)

has the property g(x) ≥ 0 on X and g(x∗) = 0 if and only if x∗ solves VIP(X , F).
I So one can solve VIP(X , F) by minimizing g on X .
I In order to ensure differentiability, one typically has to add regularization term to g.

Generalized KKT conditions:
I Assume X = {x ∈ ℝn | g(x) ≤ 0, h(x) = 0} with g : ℝn → ℝm, h : ℝn → ℝp continuously differentiable.
I If x∗ solves VIP(X , F) and a CQ for X holds in x∗, then x∗ solves the KKT system

F (x) + ∇g(x)𝜆 + ∇h(x)𝜇 = 0,
0 ≤ 𝜆 ⊥ g(x) ≤ 0, h(x) = 0.
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Exercise: Generalized KKT conditions

Prove that — in case a CQ for X holds in x∗ — a solution x∗ of VIP(X , F) solves the generalized KKT system.
Under which assumptions does a solution x∗ of the generalized KKT system solve VIP(X , F)?
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Recap: Generalized Nash equilibrium problems (GNEPs)

Definition
A generalized Nash equilibrium problem (GNEP) consists of N coupled optimization problems of the form

min
xi

fi (xi, x−i) s.t. xi ∈ Xi (x−i).

A generalized Nash equilibrium (GNE) is a strategy vector x∗ ∈ Ω(x∗) with
x∗i ∈ argmin

xi∈Xi (x∗−i)
fi (xi, x∗−i) ∀i = 1, . . . ,N.
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Augmented Lagrangian method for GNEPs

Idea:
I Assume that strategy sets are given by

Xi (x−i) = {xi ∈ ℝni | Gi (xi, x−i) ≤ 0, Hi (xi, x−i) = 0}
and rewrite players’ problems using the augmented Lagrangian with 𝜆i ∈ ℝmi , 𝜇i ∈ ℝpi and 𝛼i > 0:

min
xi∈ℝni

fi (xi, x−i) +
𝛼i
2

[


max{0,Gi (xi, x−i) + 𝜆 i
𝛼i
}



2
2
+




Hi (xi, x−i) + 𝜇i
𝛼i




2
2

]
I Iteratively solve the resulting NEP, update the multipliers 𝜆i, 𝜇i and increase the penalty 𝛼i, if needed.

Benefits:
I Can be applied to general GNEPs, not just ones with a joint feasible set.
I Individual constraints gi (xi) ≤ 0, hi (xi) = 0 can be left as constraints.

Downsides:
I Each iteration requires the solution of a NEP.
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Augmented Lagrangian method for GNEPs
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I Assume that strategy sets are given by

Xi (x−i) = {xi ∈ ℝni | Gi (xi, x−i) ≤ 0, Hi (xi, x−i) = 0}
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𝛼i
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2
2
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Hi (xi, x−i) + 𝜇i
𝛼i




2
2
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I Each iteration requires the solution of a NEP.
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Some other algorithms for GNEPs

Nikaido-Isoda function for GNEPs with a joint feasible set X:
I The function V : X → ℝ ∪ {∞} with

V (x) := sup
y∈Ω (x)

Ψ(x, y) = sup
y∈Ω (x)

N∑︁
i=1

fi (xi, x−i) − fi (yi, x−i)

has the property V (x) ≥ 0 on X and V (x∗) = 0 if and only if x∗ is a GNE.
I So one can solve the GNEP by minimizing V on X .
I For better properties of V the set Ω(x) is often replaced with X and a regularization term is added.

Quasi-Variational inequalities (QVIP):
I In case Xi (x−i) are convex and xi ↦→ fi (xi, x−i) are (pseudo)convex for fixed x−i, solving a GNEP is

equivalent to finding x∗ ∈ Ω(x∗) with
F (x∗)T (x − x∗) ≥ 0 ∀x ∈ Ω(x∗).

I So one can use algorithms for QVIPs to solve a GNEP.
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Exercise: Regularized Nikaido-Isoda function

Consider a GNEP with a nonempty, closed and convex joint feasible set X ⊆ ℝn and convex functions
xi ↦→ fi (xi, x−i) for all i = 1, . . . ,N. For 𝛾 > 0 we define the regularized value function as

V𝛾 (x) := sup
y∈X

Ψ(x, y) − 𝛾

2
‖x − y‖22 = sup

y∈X

N∑︁
i=1

fi (xi, x−i) − fi (yi, x−i) −
𝛾

2
‖x − y‖22 .

Show that V𝛾 (x) ≥ 0 for all x ∈ X and V𝛾 (x∗) = 0 if and only if x∗ ∈ X is a normalized Nash equilibrium.
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Outlook: Application in Gas Markets
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Focus on the strategic decisions of gas sellers

1: technical
capacities

2: booking
decisions

3: nomination
decisions

4: cost optimal
transport

technical capacities,
booking costs

booked
quantities

booked
quantities

nominated
quantities

nominated
quantities

nominated
quantities

transport costs
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Multi-leader multi-follower model

Consider competing firms i = 1, . . . ,N and time periods t = 1, . . . , T . Before
the first time period, each firm can invest in capacity expansion and then
every time period has to decide how much to produce/sell:
I Capacity decision before the first time period:

max
capacityi

( T∑︁
t=1

weightt · production gaint,i

)
− capacity costi · capacityi

s.t. capacityi ≥ 0
I Production decision in each time period t:

max
productiont,i

equilibrium pricet · productiont,i − production costt,i

s.t. 0 ≤ productiont,i ≤ capacityi
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Lower-level problems: Capacity-constrained Cournot problems

Assume that the equilibrium price and production costs are linear:
Pt (Y) = 𝜃t − bY and ci (yt,i) = ci · yt,i .

Then the lower-level problem of firm i in time period t is given by
max
yt,i

Pt (yt,i, yt,−i) · yt,i − ci · yt,i s.t. 0 ≤ yt,i ≤ xi .

It is known that for all capacities x = (x1, . . . , xN) ≥ 0 in each time period t = 1, . . . , T the lower-level problem
has a unique Nash equilibrium ŷt (x) with equilibrium strategies

ŷt,i (x) =


0 if firm i is inactive,
P̂t (x)−ci

b ∈ (0, xi) if firm i is unconstrained,
xi if firm i is constrained.
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Upper-level problem: Nonsmooth nonconvex (G)NEP

The upper-level problem of firm i is then given by

max
xi

T∑︁
t=1

wt ·
(
P̂t (x) · ŷt,i (x) − ci · ŷt,i (x)

)
− Si (xi, x−i) · xi s.t. xi ≥ 0.

Challenges:
I The lower-level production gains can have kinks.
I The lower-level production gains can be nonconvex.
I Technical capacities at input nodes can result in shaRot1 constraints.

Observation: The hierarchical bilevel structure introduces new challenges. (→Martin, Lars)
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Recap: Systems of coupled optimization problems

· · ·

optimization problem Nash equilibrium problem

bilevel problem multi-leader-follower problem
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Literature

I The primer on Nash equilibrium problems is based on the book Spieltheorie: Theorie und Verfahren
zur Lösung von Nash- und verallgemeinerten Nash-Gleichgewichtsproblemen by C. Kanzow, A.S.
(Birkhäuser Verlag).
For an English and slightly extended version, contact me at alexandra.schwartz@tu-dresden.de.

I The multi-leader multi-follower example is based on the article A tractable multi-leader
multi-follower peak-load-pricing model with strategic interaction by V. Grimm, D. Nowak, L.
Schewe, M. Schmidt, A.S., G. Zöttl (MathProg 2021).
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