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Motivation and context

optimization problem

-
O
O

bilevel problem

> Consider a system of coupled optimization problems.

. o .

Nash equilibrium problem

multi-leader-follower problem

> All optimization problems have to be solved simultaneously.

> Applications e.g. in energy markets, traffic flow, shared resource allocation.
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Basic Terminology
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Example: Cournot duopoly

Problem:
max  fi(x1,x2) = p(x1,x2) - x; — ¢i(x;)  Vi=1,2
X; >0

» We consider two firmsi =1, 2.
» Each firm i chooses its output x; > 0 and tries to maximize its gain.

» The market price depends on the total supply, i.e. on x1 + x>.
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Example: Cournot duopoly

Problem:
max  fi(x1,x2) = p(x1,x2) - x; — ¢i(x;)  Vi=1,2
X; >0

» We consider two firmsi =1, 2.
» Each firm i chooses its output x; > 0 and tries to maximize its gain.

» The market price depends on the total supply, i.e. on x1 + x>.

Equilibrium: A solution x* = (x3, x5) should satisfy

Xy = argmax fi(x1,x3),
X120

X5 = argmax fo(x],X2).
X2 >0
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Nash equilibrium problems (NEP)

A Nash equilibrium problem (NEP) consists of

» aset{1,...,N} of finitely many players,

> strategy sets X; C R" for every playeri=1,...,N,

» payoff functions f; : X — R for every playeri=1,...,N.
Each player i tries to solve the problem

n}i_n i1, o Xim1s Xis Xis1, - - s XN) St Xj € X;.
1

Remarks:

> For theoretical purposes we consider only minimization problems and in economic applications often
maximization problems.

> X :=X; X...X Xy € R" denotes the Cartesian product of all strategy sets.
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Nash equilibria (NE)

A vector x* = (xj‘, .. ,x;'{,) is called a Nash equilibrium (NE), if for all playersi=1,...,N

> the strategy x;‘ € X; is feasible and

» optimal in the sense that
fil,x7) < filxipxZ;) VX € Xi.

Remarks:
» In a Nash equilibrium, unilateral deviations do not improve a player’s payoff.
> We use x_; as a shorthand for the opponents’ strategies, i.e. X_j = (X1, ..+, Xj—1, Xjit1s - - - » XN)-

CTUD Nash Equilibrium Problems * A. Schwartz * Seite 6



Characterizing Nash equilibria using best responses

> Given opponents’ strategies x_;, we define the best response map of player i as

Si(x-j) = argmin fi(xj, x-).
Xi €X;

> Given a strategy vector x, the best response map is defined as
S0 = (S1(x=1)s -, Sn(x=n))-

A strategy vector x* = (x},...,xy) is a Nash equilibrium if and only if it is a fixed point of the best response map,
meaning

x* € S(x¥).
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Exercise: Nash equilibria of a Cournot duopoly

Consider the Cournot duopoly
max  fi(x1,%2) = p(x1,X2) - Xj — C- X;
x>0

with p(x1,x2) = @ — b(x1 +x2) and a > ¢ > 0, b > 0 and compute all Nash equilibria (x}, x3).
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Existence Results for NEPs

> Existence using Best Responses
> Existence using Variational Inequalities

. o .
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Kakutani's fixed point theorem for set-valued maps

Theorem (Kakutani’s fixed point theorem)

Let X € R" be nonempty, compact and convex and F : X = X a closed set-valued map such that F(x) is nonempty
and convex for all x € X. Then F has a fixed point, i.e. there is an x* € X such that x* € F(x*).

Definition
Let X € R". A set-valued map F : X = R" is called closed, if for all convergent sequences (x€), —x x* and
(V*) — y* with yK € F(xK) for all k € N we have y* € F(x*).

Remarks:
> Kakutani's fixed point theorem is a generalization of Brouwer’s fixed point theorem to set-valued maps.

> Closedness of the set-valued map replaces the continuity assumption in Brouwer’s fixed point theorem.
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Existence theorem of Nikaido and Isoda

Theorem (Existence theorem of Nikaido and Isoda)

Assume that the strategy sets X; C R" are nonempty, compact and convex and payoff functions f; : X — R are
continuous in x and (quasi)convex in x; for every fixed x_; for all i = 1,...,N. Then there exists at least one Nash
equilibrium.

Remarks:
» Afunctionf : X — R is quasiconvex on a convex set X C R”, if for all x,y € X and all c € (0, 1) we have
flex+ (1= 0y) < max{f(x), f(y)}.

> Quasiconvexity is a generalization of convexity, which can be characterized by the property that all
sublevel sets of f are convex.

CTUD Nash Equilibrium Problems * A. Schwartz * Seite 11



Exercise: Existence theorem of Nikaido and Isoda

Prove the existence theorem of Nikaido and Isoda.
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Interlude: Optimality condition for a single optimization problem

Problem:
min  f(x)
xeX

with X € R" convex and f : X — R continuously differentiable (on an open superset of X).

(@) Letx™ € X be a local minimum of f. Then

Vi) (x=x*) >0 VxeX.
(b) Let f be (pseudo)convex on X and x* € X with

Vi) (x—x*) >0 VxeX.

Then x* is a global minimum of f on X.
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Variational inequality problem (VIP)

Let X € R" be nonempty, closed, and convex and F : X — R". Then a variational inequality problem (VIP)
is the task to find a solution x* € X with

FxX)T(x=x*)>0  V¥xeX.

We denote this problem by VIP(X, F).

Remarks:

» A continuously differentiable function f : X — R is pseudoconvex on a convex set X € R”, if for all
X,y € X we have

Vi (y-x20 = f(y) 2fx).

» Solving a pseudoconvex optimization problem is equivalent to solving VIP(X, Vf), see previous slide.
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Exercise: KKT conditions and variational inequality problems

The KKT conditions for the nonlinear optimization problem
mXin f(x) st g(x) <0, h(x)=0
withf:R" 5> R,g:R" > R™andh: R" — RP are
Vf(x) + Vg(x)A + Vh(x)u =0,
0<-g(x) LA=0, h(x)=0
with x € R"” and multipliers A € R™, u € RP.
Rewrite the KKT conditions as a variational inequality problem.
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Exercise: Variational inequality problems and projections

Let X € R" be nonempty, closed, and convex and F : X — R".
Show that x* solves VIP(X, F) if and only if x* is a fixed point of H(x) := Px(x — yF(x)) with y > 0.
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From Nash equilibrium problem to variational inequality problem

> Recall thatin a NEP every playeri=1,..., N solves the problem
min]’;(x;,x_i).
Xi €X;
» If X; is convex and x; — fi(xj, x_;) is pseudoconvex for fixed x_;, then the problem of player i is

equivalent to the VIP
VXifi<Xb X*i)T(Xi _X;-k) >0 Vx; € X;.
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From Nash equilibrium problem to variational inequality problem

> Recall thatin a NEP every playeri=1,..., N solves the problem
min]’;(x;,x_i).
Xi €X;
» If X; is convex and x; — fi(xj, x_;) is pseudoconvex for fixed x_;, then the problem of player i is
equivalent to the VIP
Vifixix-)T(xi=x5) >0 Vx; € X..
> Defining X := X X...x Xy and
VX1f1 (X1 s X1 )
F(x) := s
Viufn (X, X-n)
we see that — under the given assumptions — the NEP is equivalent to VIP(X, F).
Remarks:
» Instead of having to solve N optimization problems simultaneously, we can solve one joint VIP.

> This observation is useful for existence results and solution algorithms.
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Existence results for variational inequality problems

Let X C R"™ be nonempty, closed and convex and F : X — R".
(a) If F is continuous and X bounded, then VIP(X, F) has at least one solution.
(b) If F is (pseudo)monotone, then the solution set of VIP(X, F) is convex (possibly empty).
(c) If F is strictly monotone, then VIP(X, F) has at most one solution (possibly none).
(d) If F is uniformly monotone, then VIP(X, F) has at exactly one solution.

Remarks:
> Part (a) follows from Brouwer’s fixed point theorem.
> Afunction F : X — R is monotone, if for all x, y € X we have (F(x) — F(y))" (x —y) > 0.
» If F: X — R"is differentiable, then it is monotone if and only if F’(x) is positive semidefinite on X.
» Uniform monotonicity is also called strong monotonicity (not to be confused with strict monotonicity).
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Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case X := X7 X ... X Xy and

Vi f1(x1,x-1)
F(x) ::( ),

Vv v, X—n)
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Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case X := X7 X ... X Xy and

Vi f1 (X1, x-1)
F(x) :=

Vv v, X—n)

Conditions on X:

> X is nonempty/convex/closed/bounded if and only if all X; are nonempty/convex/closed/bounded.
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Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case X := X7 X ... X Xy and
Vi fr(x1,x21)
F(x) := ,

Vv v, X—n)

Conditions on X:

> X is nonempty/convex/closed/bounded if and only if all X; are nonempty/convex/closed/bounded.

Conditions on F:
> If x; — fi(x;, x_j) is sufficiently smooth, then the following are equivalent:
> x;i > fi(x;,x_;) is convex on X;
> x;i = Vyfi(x;,x-;) is monotone on X;
> Xji Vf/_xl_f,-(x,-,x_,-) is positive semidefinite on X;
» Unfortunately, monotonicity of the components Vy.f;(x;, x_;) is not enough to ensure monotonicity of F.
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Exercise: Existence results for a Cournot oligopoly

Consider the Cournot oligopoly
max  fij(x1,x2) = p(x) - Xj = G - X
X; =0

withp(x) =a—-b Z}L xjand a,b,¢; > 0fori=1,...,N. What do the existence results tell us about this NEP?
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Generalization of NEPs
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Example: Modified Cournot duopoly

Problem:
max fix1,x2) = p(x1,x2) - xj—cx; st. x; >0, x1+x2<C

with p(x1,x2) = a — b(x; +x2) anda,b,c,C > 0.
Examples for such shared constraints are
» shared network capacities,

» shared emission caps,
> market clearing constraints.
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Example: Modified Cournot duopoly

Problem:
max fix1,x2) = p(x1,x2) - xj—cx; st. x; >0, x1+x2<C

with p(x1,x2) = a — b(x; +x2) anda,b,c,C > 0.

Examples for such shared constraints are
» shared network capacities,
» shared emission caps,

> market clearing constraints.

Challenge: Shared or coupled constraints to not fit in our current NEP framework.
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Generalized Nash equilibrium problems

A generalized Nash equilibrium problem (GNEP) consists of

» aset{1,...,N} of finitely many players,
> strategy set maps X; : R"" = R" for every playeri=1,...,N,
> payoff functions f; : R” — R for every playeri=1,...,N.
Each player i tries to solve the problem
n}in filxi,x_j) s.t. xj € Xj(x_)).

Remarks:
» For a given strategy vector x define the set of feasible reactions as Q(x) := X1 (x_1) X ... X Xy (X_n).
» Only fixed points x* € Q(x*) can be solutions of the GNEP.
> Shared constraints result in a joint feasible set X € R" such that X;(x_;) = {x; | (x;,x_;) € X}
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Exercise: Feasible reactions on a joint feasible set

Consider a GNEP with N = 2 players and the joint feasible set
X:{xeR2 |x12+x§ <1}
Determine the set of feasible reactions Q(x) to the following strategy vectors:
x =(0,0), x=1(0,1), x=(-1,-1)
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Normalized Nash equilibria on a joint feasible set

Definition
Consider a generalized Nash equilibrium problem with N players and a joint feasible set X. A point x* € X is
called a normalized Nash equilibrium, if it satisfies

N
W(xy) = YOG ~fipxt) 20 Wy eX.
i=1

Remarks:
» The function W is called the Nikaido-Isoda function and can also be used in solution algorithms.
» A Nash equilibrium x* € X is characterized by W(x*,y) > 0 for all y € Q(x*).
> For NEPs, there is no difference between Nash equilibria and normalized Nash equilibria.

> For GNEPs with a joint feasible set X, normalized Nash equilibria form a subset of its Nash equilibria.
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Exercise: Normalized Nash equilibria and multipliers

Consider a GNEP with N players, payoff functions f; and a joint feasible set
X={xeR"|g(x) <0, h(x) =0}.
Assume that a suitable CQ holds in x* € X. Compare the resulting KKT systems for
(a) x* being a Nash equilibrium of the GNEP,
(b) x* being a normalized Nash equilibrium of the GNEP.
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Some Solution Approaches

> Algorithms for NEPs
> Algorithms for VIPs
> Algorithms for GNEPs

. o

< TUD Nash Equilibrium Problems * A. Schwartz * Seite 27



Recap: Nash equilibrium problems (NEPs)

A Nash equilibrium problem (NEP) consists of N coupled optimization problems of the form
n}(in filxi,x—j) st xj €X;.
i

A Nash equilibrium (NE) is a strategy vector x* € X = X7 X ... X Xy with

X; € argmin fi(x;, x";) Vi=1,...,N.
X €X;

CTUD Nash Equilibrium Problems * A. Schwartz * Seite 28



Jacobi- and Gauss-Seidel method

Idea:

> Iteratively determine best responses of all players
k+1 : k
x; " =argmin fi(x;,x_,).
Xi €X;

> Jacobi relies on parallel updates, Gauss-Seidel on sequential updates.
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Jacobi- and Gauss-Seidel method

Idea:
> Iteratively determine best responses of all players
Kk+1 : k
X = argmin fi(x;, x")).
Xi €X;

> Jacobi relies on parallel updates, Gauss-Seidel on sequential updates.

Benefits:
> Easy to implement.

» Distributed/asynchronous version of Jacobi method possible.

Downsides:

> Convergence typically not guaranteed, iterates can cycle or diverge.
> Feasibility not guaranteed for GNEPs.
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Exercise: Gauss-Seidel method

Apply the Gauss-Seidel method to the following two NEPs:
(a) rock, paper, scissors
(b) Cournot duopoly witha >c¢>0,b > 0:

min fi(xi,x_)) =a—b-(x; +x2) —c-x;  Vi=1,2
x; =0
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Recap: Variational inequality reformulation of NEPs

» Consider a NEP
min fi(x;,x_j) s.t. xj€X; Vi=1,...,N
Xi

with X; € R" convex and x; - f(x;, x_;) pseudoconvex for fixed x_;.
» Then NEP is equivalent to VIP(X, F) with X := X7 X ... X Xy and
Vi fr(x1,x-1)
F(x) =

Vv X, X—n)
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Recap: Variational inequality reformulation of NEPs

> Consider a NEP
n}in filxi,x_j) st. x;€eX Vi=1,...,N
with X; € R" convex and x; - f(x;, x_;) pseudoconvex for fixed x_;.
» Then NEP is equivalent to VIP(X, F) with X := X7 X ... X Xy and
Vi fr(x1,x-1)
F(x) = :
Vinfn (X, X=n)

» Solving a variational inequality VIP(X, F) with X C R"” nonempty, closed, convex and F: X — R" is
equivalent to computing a fixed point of

H(x) = Px(x = yF(x))
with y > 0 arbitrary.
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Projection-based algorithms for VIPs

Idea:
> With some y > 0 iteratively compute the projections
XK= HOK) = Py (XK = yE(x9)).
> Variations use halfsteps to update F(x¥) before updating x or vary the parameter y.
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Projection-based algorithms for VIPs

Idea:
> With some y > 0 iteratively compute the projections
XK= HOK) = Py (XK = yE(x9)).

> Variations use halfsteps to update F(x¥) before updating x or vary the parameter y.

Benefits:
> Requires only evaluations of F itself, no derivatives.
> Incase X := X1 X ... X Xy the projections can be computed separately.

Downsides:
> Convergence can require strong assumptions concerning monotonicity and Lipschitz continuity of F.

> Convergence is typically slow.
» Computing the projections can be computationally expensive.
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Exercise: Projection method

Consider a NEP with X; € R" be nonempty, closed and convex and x; - f;(x;, x_;) be (pseudo)convex.
How can the iterates generated by the projection method applied to the corresponding VIP(X, F) be
interpreted in terms of the original NEP?
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Some other algorithms for VIPs

Gap functions:
» The function g : X —» R U {oo} with
9(x) = supF()' (x -y)
yex
has the property g(x) > 0 on X and g(x*) = 0 if and only if x* solves VIP(X, F).
» So one can solve VIP(X, F) by minimizing g on X.
> In order to ensure differentiability, one typically has to add regularization term to g.

< TUD Nash Equilibrium Problems * A. Schwartz * Seite 34



Some other algorithms for VIPs

Gap functions:
» The function g : X —» R U {oo} with
9(x) = supF()' (x -y)
yex
has the property g(x) > 0 on X and g(x*) = 0 if and only if x* solves VIP(X, F).
» So one can solve VIP(X, F) by minimizing g on X.
> In order to ensure differentiability, one typically has to add regularization term to g.

Generalized KKT conditions:
> Assume X = {x € R" | g(x) < 0,h(x) =0} withg : R" —» R™, h : R" — RP continuously differentiable.
» If x* solves VIP(X, F) and a CQ for X holds in x*, then x* solves the KKT system
F(x)+Vg(x)A + Vh(x)u =0,
0<Alg(x) <0, h(x) = 0.
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Exercise: Generalized KKT conditions

Prove that — in case a CQ for X holds in x* — a solution x* of VIP(X, F) solves the generalized KKT system.
Under which assumptions does a solution x* of the generalized KKT system solve VIP(X, F)?
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Recap: Generalized Nash equilibrium problems (GNEPs)

A generalized Nash equilibrium problem (GNEP) consists of N coupled optimization problems of the form
n}inf,'(x,-, X_j) st xj € Xi(x_j).
i

A generalized Nash equilibrium (GNE) is a strategy vector x* € Q(x*) with

x; € argmin fi(x,x')  Vi=1,... N
Xi €Xi(x",)
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Augmented Lagrangian method for GNEPs

Idea:
» Assume that strategy sets are given by
Xi(x_) = {xi € R" | G;(x;,x_1) <0, Hi(x;,x—;) =0}
and rewrite players’ problems using the augmented Lagrangian with 4; € R™, u; € RPi and o > 0:
2 12
’2 + ‘ Hi(xj, x_j) + ﬁ—:”z]

» Iteratively solve the resulting NEP, update the multipliers A;, y; and increase the penalty «;, if needed.

“max{o, Gi(xj, x_j) + 2(—::}

. i
min fi(xj, x_j) + —
x,-e[R"ifl( i X=i) ¥ 5
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Augmented Lagrangian method for GNEPs

Idea:
» Assume that strategy sets are given by
Xi(x-i) = {x;i € R" | Gj(xj,x_;) <0, Hj(x;,x_;) =0}
and rewrite players’ problems using the augmented Lagrangian with 4; € R™, u; € RPi and o > 0:
' ] g
i(Xiy X_j) + = + [|Hi(x;, x—j) + 5
x,rg[kn"lﬁ( i» X=i) 5 5 i(Xi, X=7) ai |,

» Iteratively solve the resulting NEP, update the multipliers A;, y; and increase the penalty «;, if needed.

“max{o, Gi(xj, x_j) + 2(—::}

Benefits:
> Can be applied to general GNEPs, not just ones with a joint feasible set.

» Individual constraints gj(x;) < 0, hj(x;) = 0 can be left as constraints.

Downsides:
> Each iteration requires the solution of a NEP.
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Some other algorithms for GNEPs

Nikaido-Isoda function for GNEPs with a joint feasible set X:
» The function V : X — R U {co} with

N
V()= sup WGy = sup ) filkix-i) = filyisx-)

yeQ(x) yeQ(x) o
has the property V(x) > 0 on X and V(x*) = 0 if and only if x* is a GNE.
» So one can solve the GNEP by minimizing V on X.

> For better properties of V the set Q(x) is often replaced with X and a regularization term is added.
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Some other algorithms for GNEPs

Nikaido-Isoda function for GNEPs with a joint feasible set X:
» The function V : X — R U {co} with

N
V()= sup WGy = sup ) filkix-i) = filyisx-)

yeQ(x) yeQ(x) o
has the property V(x) > 0 on X and V(x*) = 0 if and only if x* is a GNE.
» So one can solve the GNEP by minimizing V on X.

> For better properties of V the set Q(x) is often replaced with X and a regularization term is added.

Quasi-Variational inequalities (QVIP):
» In case Xj(x_;) are convex and x; — fj(xj, x_;) are (pseudo)convex for fixed x_j, solving a GNEP is
equivalent to finding x* € Q(x*) with
FxX)T(x=x*) 20  ¥xe Q(x").

> So one can use algorithms for QVIPs to solve a GNEP.
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Exercise: Regularized Nikaido-Isoda function

Consider a GNEP with a nonempty, closed and convex joint feasible set X € R"” and convex functions
xj — fi(x;,x—j) foralli=1,...,N. For y > 0 we define the regularized value function as

N
)4 )4
W) =sup Wxy) = Slx=yllE=sup > filxix) = filvix-i) = 5 lx =I5,
yex yexX 4

Show that Vy(x) > 0 for all x € X and V), (x*) = 0 if and only if x* € X is a normalized Nash equilibrium.
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Outlook: Application in Gas Markets
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Focus on the strategic decisions of gas sellers

technical capacities,
booking costs

1: technical
capacities

booked
quantities

transport costs

nominated quantities

uantities
4: cost optimal
transport nominated
quantities
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Multi-leader multi-follower model

Consider competing firmsi=1,..., N and time periodst =1, ..., T. Before
the first time period, each firm can invest in capacity expansion and then
every time period has to decide how much to produce/sell:

» Capacity decision before the first time period:

r
max Z weight, - production gain;; | — capacity cost; - capacity;
capacity; = ’
s.t. capacity; > 0

> Production decision in each time period t:

max equilibrium price; - production; ; — production cost; ;
production,; g g

s.t. 0 < production;; < capacity;
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Lower-level problems: Capacity-constrained Cournot problems

Assume that the equilibrium price and production costs are linear:
Pe(Y)=0r—bY and  ¢(y) = ¢ Y-
Then the lower-level problem of firm i in time period t is given by

max Pe(yeisYe—~i) " Yei—CiYei St 0 <yei < X
ti
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Lower-level problems: Capacity-constrained Cournot problems

Assume that the equilibrium price and production costs are linear:
Pe(Y)=0r—bY and  ¢(y) = ¢ Y-

Then the lower-level problem of firm i in time period t is given by
max Pe(VeisYt,-i) *Yei = Ci Vi St 0 <y < x;.

It is known that for all capacities x = (xq,...,xy) = 0in each time periodt = 1,..., T the lower-level problem
has a unique Nash equilibrium j; (x) with equilibrium strategies
0 if firm i is inactive,

Jei(x) = P‘(X) S € (0,x) iffirm iis unconstrained,
Xj if firm i is constrained.
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Upper-level problem: Nonsmooth nonconvex (G)NEP

The upper-level problem of firm i is then given by

;
max >owe (/A’t(X) Vi (X) -G ‘f/r,i(X)) =S x-) - st X 2 0.
o=

Challenges:
»> The lower-level production gains can have kinks.
> The lower-level production gains can be nonconvex.

» Technical capacities at input nodes can result in shaRot1 constraints.

Observation: The hierarchical bilevel structure introduces new challenges. (— Martin, Lars)
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Recap: Systems of coupled optimization problems

. . o .

optimization problem Nash equilibrium problem

/. | ‘—/’.
] ]
] 8 8

bilevel problem multi-leader-follower problem
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Literature

> The primer on Nash equilibrium problems is based on the book Spieltheorie: Theorie und Verfahren
zur Loésung von Nash- und verallgemeinerten Nash-Gleichgewichtsproblemen by C. Kanzow, A.S.
(Birkhauser Verlag).
For an English and slightly extended version, contact me at alexandra.schwartz@tu-dresden.de.

» The multi-leader multi-follower example is based on the article A tractable multi-leader
multi-follower peak-load-pricing model with strategic interaction by V. Grimm, D. Nowak, L.
Schewe, M. Schmidt, A.S., G. Z6ttl (MathProg 2021).
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