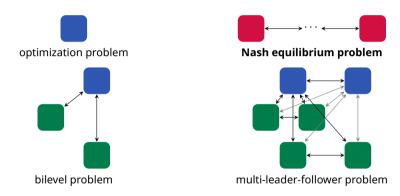


Prof. Dr. Alexandra Schwartz Fakultät Mathematik, Institut für Numerische Mathematik 6. November 2025

A Primer on Nash Equilibrium Problems

Terminology, Existence, Algorithms

Motivation and context



- ► Consider a system of **coupled** optimization problems.
- ► All optimization problems have to be solved **simultaneously**.
- ▶ Applications e.g. in **energy markets**, traffic flow, shared resource allocation.

Basic Terminology

Example: Cournot duopoly

Problem:

$$\max_{x_i \ge 0} f_i(x_1, x_2) = p(x_1, x_2) \cdot x_i - c_i(x_i) \qquad \forall i = 1, 2$$

- \blacktriangleright We consider two firms i = 1, 2.
- ► Each firm *i* chooses its output $x_i \ge 0$ and tries to maximize its gain.
- ▶ The market price depends on the total supply, i.e. on $x_1 + x_2$.

Example: Cournot duopoly

Problem:

$$\max_{x_i \ge 0} f_i(x_1, x_2) = p(x_1, x_2) \cdot x_i - c_i(x_i) \qquad \forall i = 1, 2$$

- \blacktriangleright We consider two firms i = 1, 2.
- ► Each firm *i* chooses its output $x_i \ge 0$ and tries to maximize its gain.
- ► The market price depends on the total supply, i.e. on $x_1 + x_2$.

Equilibrium: A solution $x^* = (x_1^*, x_2^*)$ should satisfy

$$x_1^* = \underset{x_1 \ge 0}{\operatorname{argmax}} f_1(x_1, x_2^*),$$

 $x_2^* = \underset{x_2 \ge 0}{\operatorname{argmax}} f_2(x_1^*, x_2).$

Nash equilibrium problems (NEP)

Definition

A Nash equilibrium problem (NEP) consists of

- ightharpoonup a set $\{1, ..., N\}$ of finitely many **players**,
- ▶ **strategy sets** $X_i \subseteq \mathbb{R}^{n_i}$ for every player i = 1, ..., N,
- **payoff functions** $f_i: X \to \mathbb{R}$ for every player i = 1, ..., N.

Each player i tries to solve the problem

$$\min_{X_i} \quad f_i(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_N) \quad \text{s.t.} \quad x_i \in X_i.$$

- For theoretical purposes we consider only minimization problems and in economic applications often maximization problems.
- ▶ $X := X_1 \times ... \times X_N \subseteq \mathbb{R}^n$ denotes the Cartesian product of all strategy sets.

Nash equilibria (NE)

Definition

A vector $x^* = (x_1^*, \dots, x_N^*)$ is called a **Nash equilibrium (NE)**, if for all players $i = 1, \dots, N$

- ► the strategy $x_i^* \in X_i$ is feasible and
- ► optimal in the sense that

$$f_i(x_i^*, \mathbf{x}_{-i}^*) \leq f_i(x_i, \mathbf{x}_{-i}^*) \quad \forall x_i \in X_i.$$

- ► In a Nash equilibrium, unilateral deviations do not improve a player's payoff.
- ▶ We use x_{-i} as a shorthand for the opponents' strategies, i.e. $x_{-i} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_N)$.

Characterizing Nash equilibria using best responses

ightharpoonup Given opponents' strategies x_{-i} , we define the **best response map of player** i as

$$S_i(\mathbf{x}_{-i}) = \underset{\mathbf{x}_i \in X_i}{\operatorname{argmin}} f_i(\mathbf{x}_i, \mathbf{x}_{-i}).$$

► Given a strategy vector *x*, the **best response map** is defined as

$$S(x) = (S_1(x_{-1}), \dots, S_N(x_{-N})).$$

Lemma

A strategy vector $x^* = (x_1^*, \dots, x_N^*)$ is a Nash equilibrium if and only if it is a fixed point of the best response map, meaning

$$x^* \in S(x^*)$$
.

Exercise: Nash equilibria of a Cournot duopoly

Consider the Cournot duopoly

$$\max_{x_i \ge 0} f_i(x_1, x_2) = p(x_1, x_2) \cdot x_i - c \cdot x_i$$

with $p(x_1, x_2) = a - b(x_1 + x_2)$ and a > c > 0, b > 0 and compute all Nash equilibria (x_1^*, x_2^*) .

Existence Results for NEPs

- ► Existence using Best Responses
- ► Existence using Variational Inequalities

Kakutani's fixed point theorem for set-valued maps

Theorem (Kakutani's fixed point theorem)

Let $X \subseteq \mathbb{R}^n$ be nonempty, compact and convex and $F: X \rightrightarrows X$ a closed set-valued map such that F(x) is nonempty and convex for all $x \in X$. Then F has a fixed point, i.e. there is an $x^* \in X$ such that $x^* \in F(x^*)$.

Definition

Let $X \subseteq \mathbb{R}^n$. A set-valued map $F: X \Rightarrow \mathbb{R}^n$ is called **closed**, if for all convergent sequences $(x^k)_k \to_X x^*$ and $(y^k)_k \to y^*$ with $y^k \in F(x^k)$ for all $k \in \mathbb{N}$ we have $y^* \in F(x^*)$.

- Kakutani's fixed point theorem is a generalization of Brouwer's fixed point theorem to set-valued maps.
- Closedness of the set-valued map replaces the continuity assumption in Brouwer's fixed point theorem.

Existence theorem of Nikaido and Isoda

Theorem (Existence theorem of Nikaido and Isoda)

Assume that the strategy sets $X_i \subseteq \mathbb{R}^{n_i}$ are nonempty, compact and convex and payoff functions $f_i: X \to \mathbb{R}$ are continuous in x and (quasi)convex in x_i for every fixed x_{-i} for all $i=1,\ldots,N$. Then there exists at least one Nash equilibrium.

- ► A function $f: X \to \mathbb{R}$ is **quasiconvex** on a convex set $X \subseteq \mathbb{R}^n$, if for all $x, y \in X$ and all $c \in (0, 1)$ we have $f(cx + (1 c)y) \le \max\{f(x), f(y)\}.$
- Quasiconvexity is a generalization of convexity, which can be characterized by the property that all sublevel sets of f are convex.

Exercise: Existence theorem of Nikaido and Isoda

Prove the existence theorem of Nikaido and Isoda.

Interlude: Optimality condition for a single optimization problem

Problem:

$$\min_{x \in X} f(x)$$

with $X \subseteq \mathbb{R}^n$ convex and $f: X \to \mathbb{R}$ continuously differentiable (on an open superset of X).

Lemma

(a) Let $x^* \in X$ be a local minimum of f. Then

$$\nabla f(x^*)^T (x - x^*) \ge 0 \quad \forall x \in X.$$

(b) Let f be (pseudo)convex on X and $x^* \in X$ with

$$\nabla f(x^*)^T (x - x^*) \ge 0 \quad \forall x \in X.$$

Then x^* is a global minimum of f on X.

Variational inequality problem (VIP)

Definition

Let $X \subseteq \mathbb{R}^n$ be nonempty, closed, and convex and $F: X \to \mathbb{R}^n$. Then a **variational inequality problem (VIP)** is the task to find a solution $x^* \in X$ with

$$F(x^*)^T(x-x^*) \ge 0 \quad \forall x \in X.$$

We denote this problem by VIP(X, F).

Remarks:

▶ A continuously differentiable function $f: X \to \mathbb{R}$ is **pseudoconvex** on a convex set $X \subseteq \mathbb{R}^n$, if for all $x, y \in X$ we have

$$\nabla f(x)^T (y-x) \ge 0 \implies f(y) \ge f(x).$$

ightharpoonup Solving a pseudoconvex optimization problem is equivalent to solving VIP($X, \nabla f$), see previous slide.

Exercise: KKT conditions and variational inequality problems

The KKT conditions for the nonlinear optimization problem

$$\min_{x} f(x) \quad \text{s.t.} \quad g(x) \le 0, \quad h(x) = 0$$

with $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^p$ are

$$\nabla f(x) + \nabla g(x)\lambda + \nabla h(x)\mu = 0,$$

$$0 \le -g(x) \perp \lambda \ge 0, \qquad h(x) = 0$$

with $x \in \mathbb{R}^n$ and multipliers $\lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}^p$.

Rewrite the KKT conditions as a variational inequality problem.

Exercise: Variational inequality problems and projections

Let $X \subseteq \mathbb{R}^n$ be nonempty, closed, and convex and $F: X \to \mathbb{R}^n$.

Show that x^* solves VIP(X, F) if and only if x^* is a fixed point of $H(x) := P_X(x - \gamma F(x))$ with $\gamma > 0$.

From Nash equilibrium problem to variational inequality problem

▶ Recall that in a NEP every player i = 1, ..., N solves the problem

$$\min_{x_i \in X_i} f_i(x_i, \mathbf{x}_{-i}).$$

▶ If X_i is convex and $x_i \mapsto f_i(x_i, \mathbf{x}_{-i})$ is pseudoconvex for fixed \mathbf{x}_{-i} , then the problem of player i is equivalent to the VIP

$$\nabla_{x_i} f_i(x_i, \mathbf{x}_{-i})^T (x_i - x_i^*) \ge 0 \qquad \forall x_i \in X_i.$$

From Nash equilibrium problem to variational inequality problem

Recall that in a NEP every player i = 1, ..., N solves the problem

$$\min_{X_i \in X_i} f_i(x_i, \mathbf{x}_{-i}).$$

▶ If X_i is convex and $x_i \mapsto f_i(x_i, \mathbf{x}_{-i})$ is pseudoconvex for fixed \mathbf{x}_{-i} , then the problem of player i is equivalent to the VIP

$$\nabla_{x_i} f_i(x_i, \mathbf{x}_{-i})^T (x_i - x_i^*) \ge 0 \qquad \forall x_i \in X_i.$$

▶ Defining $X := X_1 \times ... \times X_N$ and

$$F(x) := \begin{pmatrix} \nabla_{x_1} f_1(x_1, x_{-1}) \\ \vdots \\ \nabla_{x_N} f_N(x_N, x_{-N}) \end{pmatrix},$$

we see that — under the given assumptions — the NEP is equivalent to VIP(X, F).

- ▶ Instead of having to solve N optimization problems simultaneously, we can solve one joint VIP.
- ▶ This observation is useful for existence results and solution algorithms.

Existence results for variational inequality problems

Theorem

Let $X \subseteq \mathbb{R}^n$ be nonempty, closed and convex and $F: X \to \mathbb{R}^n$.

- (a) If F is continuous and X bounded, then VIP(X, F) has at least one solution.
- (b) If F is (pseudo)monotone, then the solution set of VIP(X, F) is convex (possibly empty).
- (c) If F is strictly monotone, then VIP(X, F) has at most one solution (possibly none).
- (d) If F is uniformly monotone, then VIP(X, F) has at exactly one solution.

- ► Part (a) follows from Brouwer's fixed point theorem.
- ▶ A function $F: X \to \mathbb{R}^n$ is **monotone**, if for all $x, y \in X$ we have $(F(x) F(y))^T (x y) \ge 0$.
- ▶ If $F: X \to \mathbb{R}^n$ is differentiable, then it is monotone if and only if F'(x) is positive semidefinite on X.
- Uniform monotonicity is also called strong monotonicity (not to be confused with strict monotonicity).

Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case $X := X_1 \times ... \times X_N$ and

$$F(x) := \begin{pmatrix} \nabla_{x_1} f_1(x_1, x_{-1}) \\ \vdots \\ \nabla_{x_N} f_N(x_N, x_{-N}) \end{pmatrix},$$

Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case $X := X_1 \times ... \times X_N$ and

$$F(x) := \begin{pmatrix} \nabla_{x_1} f_1(x_1, x_{-1}) \\ \vdots \\ \nabla_{x_N} f_N(x_N, x_{-N}) \end{pmatrix},$$

Conditions on X:

▶ X is nonempty/convex/closed/bounded if and only if all X_i are nonempty/convex/closed/bounded.

Applying the existence results to Nash equilibrium problems

Recap: We are interested in the case $X := X_1 \times ... \times X_N$ and

$$F(x) := \begin{pmatrix} \nabla_{x_1} f_1(x_1, x_{-1}) \\ \vdots \\ \nabla_{x_N} f_N(x_N, x_{-N}) \end{pmatrix},$$

Conditions on X:

▶ X is nonempty/convex/closed/bounded if and only if all X_i are nonempty/convex/closed/bounded.

Conditions on F:

- ▶ If $x_i \mapsto f_i(x_i, x_{-i})$ is sufficiently smooth, then the following are equivalent:
 - $ightharpoonup x_i \mapsto f_i(x_i, x_{-i})$ is convex on X_i
 - ► $x_i \mapsto \nabla_{x_i} f_i(x_i, x_{-i})$ is monotone on X_i
 - ► $x_i \mapsto \nabla^2_{x_i x_i} f_i(x_i, x_{-i})$ is positive semidefinite on X_i
- ▶ Unfortunately, monotonicity of the components $\nabla_{x_i} f_i(x_i, x_{-i})$ is not enough to ensure monotonicity of F.

Exercise: Existence results for a Cournot oligopoly

Consider the Cournot oligopoly

$$\max_{x_i>0} f_i(x_1, x_2) = p(x) \cdot x_i - c_i \cdot x_i$$

with $p(x) = a - b \sum_{i=1}^{N} x_i$ and $a, b, c_i > 0$ for i = 1, ..., N. What do the existence results tell us about this NEP?

Generalization of NEPs



Example: Modified Cournot duopoly

Problem:

$$\max_{x_i} \quad f_i(x_1,x_2) = p(x_1,x_2) \cdot x_i - cx_i \quad \text{s.t.} \quad x_i \geq 0, \quad x_1 + x_2 \leq C$$
 with $p(x_1,x_2) = a - b(x_1 + x_2)$ and $a,b,c,C > 0$.

Examples for such shared constraints are

- shared network capacities,
- shared emission caps,
- market clearing constraints.

Example: Modified Cournot duopoly

Problem:

$$\max_{x_i} \quad f_i(x_1,x_2) = p(x_1,x_2) \cdot x_i - cx_i \quad \text{s.t.} \quad x_i \geq 0, \quad x_1 + x_2 \leq C$$
 with $p(x_1,x_2) = a - b(x_1 + x_2)$ and $a,b,c,C > 0$.

Examples for such shared constraints are

- shared network capacities,
- shared emission caps,
- market clearing constraints.

Challenge: Shared or coupled constraints to not fit in our current NEP framework.

Generalized Nash equilibrium problems

Definition

A generalized Nash equilibrium problem (GNEP) consists of

- ightharpoonup a set $\{1, ..., N\}$ of finitely many **players**,
- **strategy set maps** $X_i : \mathbb{R}^{n-n_i} \rightrightarrows \mathbb{R}^{n_i}$ for every player i = 1, ..., N,
- **payoff functions** $f_i : \mathbb{R}^n \to \mathbb{R}$ for every player i = 1, ..., N.

Each player i tries to solve the problem

$$\min_{\mathbf{x}_i} \quad f_i(\mathbf{x}_i, \mathbf{x}_{-i}) \quad \text{s.t.} \quad \mathbf{x}_i \in X_i(\mathbf{x}_{-i}).$$

- ► For a given strategy vector x define the set of **feasible reactions** as $\Omega(x) := X_1(x_{-1}) \times ... \times X_N(x_{-N})$.
- ▶ Only fixed points $x^* \in \Omega(x^*)$ can be solutions of the GNEP.
- ▶ Shared constraints result in a joint feasible set $X \subseteq \mathbb{R}^n$ such that $X_i(x_{-i}) = \{x_i \mid (x_i, x_{-i}) \in X\}$.

Exercise: Feasible reactions on a joint feasible set

Consider a GNEP with N = 2 players and the joint feasible set

$$X = \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1\}.$$

Determine the set of feasible reactions $\Omega(x)$ to the following strategy vectors:

$$x = (0,0),$$
 $x = (0,1),$ $x = (-1,-1)$

Normalized Nash equilibria on a joint feasible set

Definition

Consider a generalized Nash equilibrium problem with N players and a joint feasible set X. A point $x^* \in X$ is called a **normalized Nash equilibrium**, if it satisfies

$$\Psi(x^*, \mathbf{y}) = \sum_{i=1}^{N} f_i(x_i^*, x_{-i}^*) - f_i(\mathbf{y}_i, x_{-i}^*) \ge 0 \qquad \forall \mathbf{y} \in X.$$

- \blacktriangleright The function Ψ is called the **Nikaido-Isoda function** and can also be used in solution algorithms.
- ▶ A Nash equilibrium $x^* \in X$ is characterized by $\Psi(x^*, y) \ge 0$ for all $y \in \Omega(x^*)$.
- For NEPs, there is no difference between Nash equilibria and normalized Nash equilibria.
- For GNEPs with a joint feasible set X, normalized Nash equilibria form a subset of its Nash equilibria.

Exercise: Normalized Nash equilibria and multipliers

Consider a GNEP with N players, payoff functions f_i and a joint feasible set

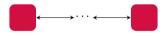
$$X = \{x \in \mathbb{R}^n \mid g(x) \le 0, \ h(x) = 0\}.$$

Assume that a suitable CQ holds in $x^* \in X$. Compare the resulting KKT systems for

- (a) x^* being a Nash equilibrium of the GNEP,
- (b) x^* being a normalized Nash equilibrium of the GNEP.

Some Solution Approaches

- ► Algorithms for NEPs
- ► Algorithms for VIPs
- ► Algorithms for GNEPs



Recap: Nash equilibrium problems (NEPs)

Definition

A Nash equilibrium problem (NEP) consists of N coupled optimization problems of the form

$$\min_{X_i} f_i(x_i, \mathbf{x}_{-i})$$
 s.t. $x_i \in X_i$.

A **Nash equilibrium (NE)** is a strategy vector $x^* \in X = X_1 \times ... \times X_N$ with

$$x_i^* \in \underset{x_i \in X_i}{\operatorname{argmin}} f_i(x_i, x_{-i}^*) \qquad \forall i = 1, \dots, N.$$

Jacobi- and Gauss-Seidel method

Idea:

► Iteratively determine best responses of all players

$$x_i^{k+1} = \underset{x_i \in X_i}{\operatorname{argmin}} \ f_i(x_i, x_{-i}^k).$$

► Jacobi relies on parallel updates, Gauss-Seidel on sequential updates.

Jacobi- and Gauss-Seidel method

Idea:

► Iteratively determine best responses of all players

$$x_i^{k+1} = \underset{x_i \in X_i}{\operatorname{argmin}} \ f_i(x_i, x_{-i}^k).$$

► Jacobi relies on parallel updates, Gauss-Seidel on sequential updates.

Benefits:

- Easy to implement.
- Distributed/asynchronous version of Jacobi method possible.

Downsides:

- Convergence typically not guaranteed, iterates can cycle or diverge.
- Feasibility not guaranteed for GNEPs.

Exercise: Gauss-Seidel method

Apply the Gauss-Seidel method to the following two NEPs:

- (a) rock, paper, scissors
- (b) Cournot duopoly with a > c > 0, b > 0:

$$\min_{x_i \ge 0} f_i(x_i, x_{-i}) = a - b \cdot (x_1 + x_2) - c \cdot x_i \qquad \forall i = 1, 2$$

Recap: Variational inequality reformulation of NEPs

Consider a NEP

$$\min_{X_i} f_i(x_i, \mathbf{x}_{-i})$$
 s.t. $x_i \in X_i$ $\forall i = 1, \dots, \Lambda$

 $\min_{x_i} \ f_i(x_i, \mathbf{x}_{-i}) \quad \text{s.t.} \quad x_i \in X_i \qquad \forall i = 1, \dots, N$ with $X_i \subseteq \mathbb{R}^{n_i}$ convex and $x_i \mapsto f_i(x_i, \mathbf{x}_{-i})$ pseudoconvex for fixed x_{-i} .

► Then NEP is equivalent to VIP(X, F) with $X := X_1 \times ... \times X_N$ and

$$F(x) := \begin{pmatrix} \nabla_{x_1} f_1(x_1, x_{-1}) \\ \vdots \\ \nabla_{x_N} f_N(x_N, x_{-N}) \end{pmatrix}.$$

Recap: Variational inequality reformulation of NEPs

Consider a NEP

$$\min_{\mathbf{x}_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i})$$
 s.t. $\mathbf{x}_i \in X_i$ $\forall i = 1, \dots, N$

 $\min_{X_i} \ f_i(x_i, \mathbf{x}_{-i}) \quad \text{s.t.} \quad x_i \in X_i \qquad \forall i = 1, \dots, N$ with $X_i \subseteq \mathbb{R}^{n_i}$ convex and $x_i \mapsto f_i(x_i, \mathbf{x}_{-i})$ pseudoconvex for fixed x_{-i} .

► Then NEP is equivalent to VIP(X, F) with $X := X_1 \times ... \times X_N$ and

$$F(x) := \begin{pmatrix} \nabla_{x_1} f_1(x_1, x_{-1}) \\ \vdots \\ \nabla_{x_N} f_N(x_N, x_{-N}) \end{pmatrix}.$$

▶ Solving a variational inequality VIP(X, F) with $X \subseteq \mathbb{R}^n$ nonempty, closed, convex and $F: X \to \mathbb{R}^n$ is equivalent to computing a fixed point of

$$H(x) := P_X(x - \gamma F(x))$$

with v > 0 arbitrary.

Projection-based algorithms for VIPs

Idea:

• With some $\gamma > 0$ iteratively compute the projections

$$x^{k+1} := H(x^k) = P_X(x^k - \gamma F(x^k)).$$

► Variations use halfsteps to update $F(x^k)$ before updating x^k or vary the parameter y_k .

Projection-based algorithms for VIPs

Idea:

• With some $\gamma > 0$ iteratively compute the projections

$$x^{k+1} := H(x^k) = P_X(x^k - \gamma F(x^k)).$$

▶ Variations use halfsteps to update $F(x^k)$ before updating x^k or vary the parameter y_k .

Benefits:

- ► Requires only evaluations of *F* itself, no derivatives.
- ▶ In case $X := X_1 \times ... \times X_N$ the projections can be computed separately.

Downsides:

- Convergence can require strong assumptions concerning monotonicity and Lipschitz continuity of F.
- Convergence is typically slow.
- Computing the projections can be computationally expensive.

Exercise: Projection method

Consider a NEP with $X_i \subseteq \mathbb{R}^n$ be nonempty, closed and convex and $x_i \mapsto f_i(x_i, x_{-i})$ be (pseudo)convex. How can the iterates generated by the projection method applied to the corresponding VIP(X, F) be interpreted in terms of the original NEP?

Some other algorithms for VIPs

Gap functions:

▶ The function $g: X \to \mathbb{R} \cup \{\infty\}$ with

$$g(x) := \sup_{\mathbf{y} \in X} F(x)^{T} (x - \mathbf{y})$$

has the property $g(x) \ge 0$ on X and $g(x^*) = 0$ if and only if x^* solves VIP(X, F).

- ► So one can solve VIP(X, F) by minimizing g on X.
- ightharpoonup In order to ensure differentiability, one typically has to add regularization term to g.

Some other algorithms for VIPs

Gap functions:

▶ The function $g: X \to \mathbb{R} \cup \{\infty\}$ with

$$g(x) := \sup_{\mathbf{y} \in X} F(x)^{T} (x - \mathbf{y})$$

has the property $g(x) \ge 0$ on X and $g(x^*) = 0$ if and only if x^* solves VIP(X, F).

- ▶ So one can solve VIP(X, F) by minimizing g on X.
- ightharpoonup In order to ensure differentiability, one typically has to add regularization term to g.

Generalized KKT conditions:

- ► Assume $X = \{x \in \mathbb{R}^n \mid g(x) \le 0, h(x) = 0\}$ with $g : \mathbb{R}^n \to \mathbb{R}^m, h : \mathbb{R}^n \to \mathbb{R}^p$ continuously differentiable.
- ▶ If x^* solves VIP(X, F) and a CQ for X holds in x^* , then x^* solves the KKT system

$$F(x) + \nabla g(x)\lambda + \nabla h(x)\mu = 0,$$

$$0 \le \lambda \perp g(x) \le 0, \qquad h(x) = 0.$$

Exercise: Generalized KKT conditions

Prove that — in case a CQ for X holds in X^* — a solution X^* of VIP(X, F) solves the generalized KKT system. Under which assumptions does a solution X^* of the generalized KKT system solve VIP(X, F)?

Recap: Generalized Nash equilibrium problems (GNEPs)

Definition

A generalized Nash equilibrium problem (GNEP) consists of N coupled optimization problems of the form

$$\min_{\mathbf{x}_i} f_i(\mathbf{x}_i, \mathbf{x}_{-i}) \quad \text{s.t.} \quad \mathbf{x}_i \in X_i(\mathbf{x}_{-i}).$$

A **generalized Nash equilibrium (GNE)** is a strategy vector $x^* \in \Omega(x^*)$ with

$$x_i^* \in \underset{x_i \in X_i(x_{-i}^*)}{\operatorname{argmin}} f_i(x_i, x_{-i}^*) \qquad \forall i = 1, \dots, N.$$

Augmented Lagrangian method for GNEPs

Idea:

Assume that strategy sets are given by

$$X_i(\mathbf{x}_{-i}) = \{x_i \in \mathbb{R}^{n_i} \mid G_i(x_i, \mathbf{x}_{-i}) \le 0, \quad H_i(x_i, \mathbf{x}_{-i}) = 0\}$$

and rewrite players' problems using the augmented Lagrangian with $\lambda_i \in \mathbb{R}^{m_i}$, $\mu_i \in \mathbb{R}^{p_i}$ and $\alpha_i > 0$:

$$\min_{x_{i} \in \mathbb{R}^{n_{i}}} f_{i}(x_{i}, \mathbf{x}_{-i}) + \frac{\alpha_{i}}{2} \left[\left\| \max\{0, G_{i}(x_{i}, \mathbf{x}_{-i}) + \frac{\lambda_{i}}{\alpha_{i}}\} \right\|_{2}^{2} + \left\| H_{i}(x_{i}, \mathbf{x}_{-i}) + \frac{\mu_{i}}{\alpha_{i}} \right\|_{2}^{2} \right]$$

▶ Iteratively solve the resulting NEP, update the multipliers λ_i , μ_i and increase the penalty α_i , if needed.

Augmented Lagrangian method for GNEPs

Idea:

Assume that strategy sets are given by

$$X_i(\mathbf{x}_{-i}) = \{x_i \in \mathbb{R}^{n_i} \mid G_i(x_i, \mathbf{x}_{-i}) \le 0, \quad H_i(x_i, \mathbf{x}_{-i}) = 0\}$$

and rewrite players' problems using the augmented Lagrangian with $\lambda_i \in \mathbb{R}^{m_i}$, $\mu_i \in \mathbb{R}^{p_i}$ and $\alpha_i > 0$:

$$\min_{x_{i} \in \mathbb{R}^{n_{i}}} f_{i}(x_{i}, \mathbf{x}_{-i}) + \frac{\alpha_{i}}{2} \left[\left\| \max\{0, G_{i}(x_{i}, \mathbf{x}_{-i}) + \frac{\lambda_{i}}{\alpha_{i}}\} \right\|_{2}^{2} + \left\| H_{i}(x_{i}, \mathbf{x}_{-i}) + \frac{\mu_{i}}{\alpha_{i}} \right\|_{2}^{2} \right]$$

▶ Iteratively solve the resulting NEP, update the multipliers λ_i , μ_i and increase the penalty α_i , if needed.

Benefits:

- ► Can be applied to general GNEPs, not just ones with a joint feasible set.
- ▶ Individual constraints $g_i(x_i) \le 0$, $h_i(x_i) = 0$ can be left as constraints.

Downsides:

► Each iteration requires the solution of a NEP.

Some other algorithms for GNEPs

Nikaido-Isoda function for GNEPs with a joint feasible set X:

▶ The function $V: X \to \mathbb{R} \cup \{\infty\}$ with

$$V(x) := \sup_{\mathbf{y} \in \Omega(x)} \Psi(x, \mathbf{y}) = \sup_{\mathbf{y} \in \Omega(x)} \sum_{i=1}^{N} f_i(x_i, x_{-i}) - f_i(\mathbf{y}_i, x_{-i})$$

has the property $V(x) \ge 0$ on X and $V(x^*) = 0$ if and only if x^* is a GNE.

- ► So one can solve the GNEP by minimizing *V* on *X*.
- For better properties of V the set $\Omega(X)$ is often replaced with X and a regularization term is added.

Some other algorithms for GNEPs

Nikaido-Isoda function for GNEPs with a joint feasible set X:

▶ The function $V: X \to \mathbb{R} \cup \{\infty\}$ with

$$V(x) := \sup_{\mathbf{y} \in \Omega(x)} \Psi(x, \mathbf{y}) = \sup_{\mathbf{y} \in \Omega(x)} \sum_{i=1}^{N} f_i(x_i, x_{-i}) - f_i(\mathbf{y}_i, x_{-i})$$

has the property $V(x) \ge 0$ on X and $V(x^*) = 0$ if and only if x^* is a GNE.

- ► So one can solve the GNEP by minimizing *V* on *X*.
- ▶ For better properties of *V* the set $\Omega(x)$ is often replaced with *X* and a regularization term is added.

Quasi-Variational inequalities (QVIP):

► In case $X_i(x_{-i})$ are convex and $x_i \mapsto f_i(x_i, x_{-i})$ are (pseudo)convex for fixed x_{-i} , solving a GNEP is equivalent to finding $x^* \in \Omega(x^*)$ with

$$F(x^*)^T(x-x^*) \ge 0 \quad \forall x \in \Omega(x^*).$$

So one can use algorithms for QVIPs to solve a GNEP.

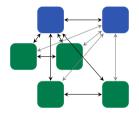
Exercise: Regularized Nikaido-Isoda function

Consider a GNEP with a nonempty, closed and convex joint feasible set $X \subseteq \mathbb{R}^n$ and convex functions $x_i \mapsto f_i(x_i, x_{-i})$ for all i = 1, ..., N. For y > 0 we define the regularized value function as

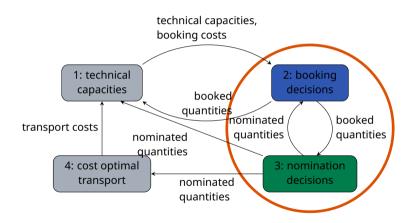
$$V_{\gamma}(x) := \sup_{y \in X} \quad \Psi(x, y) - \frac{\gamma}{2} \|x - y\|_{2}^{2} = \sup_{y \in X} \quad \sum_{i=1}^{N} f_{i}(x_{i}, x_{-i}) - f_{i}(y_{i}, x_{-i}) - \frac{\gamma}{2} \|x - y\|_{2}^{2}.$$

Show that $V_{\gamma}(x) \ge 0$ for all $x \in X$ and $V_{\gamma}(x^*) = 0$ if and only if $x^* \in X$ is a normalized Nash equilibrium.

Outlook: Application in Gas Markets



Focus on the strategic decisions of gas sellers



Multi-leader multi-follower model

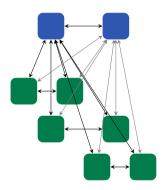
Consider competing firms $i=1,\ldots,N$ and time periods $t=1,\ldots,T$. Before the first time period, each firm can invest in capacity expansion and then every time period has to decide how much to produce/sell:

► **Capacity decision** before the first time period:

$$\max_{\substack{\text{capacity}_i\\\text{s.t.}}} \left(\sum_{t=1}^T \mathsf{weight}_t \cdot \mathsf{production} \, \mathsf{gain}_{t,i} \right) - \mathsf{capacity} \, \mathsf{cost}_i \cdot \mathsf{capacity}_i$$

▶ **Production decision** in each time period *t*:

```
max production<sub>t,i</sub> equilibrium price<sub>t</sub> · production<sub>t,i</sub> – production cost<sub>t,i</sub>
s.t. 0 \le \text{production}_{t,i} \le \text{capacity}_i
```



Lower-level problems: Capacity-constrained Cournot problems

Assume that the equilibrium price and production costs are linear:

$$P_t(Y) = \theta_t - bY$$
 and $c_i(y_{t,i}) = c_i \cdot y_{t,i}$.

Then the **lower-level problem** of firm *i* in time period *t* is given by

$$\max_{y_{t,i}} \quad \frac{P_t(y_{t,i}, y_{t,-i}) \cdot y_{t,i} - c_i \cdot y_{t,i}}{\text{s.t.}} \quad 0 \leq y_{t,i} \leq x_i.$$

Lower-level problems: Capacity-constrained Cournot problems

Assume that the equilibrium price and production costs are linear:

$$P_t(Y) = \theta_t - bY$$
 and $c_i(y_{t,i}) = c_i \cdot y_{t,i}$.

Then the **lower-level problem** of firm *i* in time period *t* is given by

$$\max_{y_{t,i}} \quad \frac{P_t(y_{t,i}, y_{t,-i}) \cdot y_{t,i} - c_i \cdot y_{t,i}}{\text{s.t.}} \quad 0 \leq y_{t,i} \leq x_i.$$

It is known that for all capacities $x=(x_1,\ldots,x_N)\geq 0$ in each time period $t=1,\ldots,T$ the lower-level problem has a **unique Nash equilibrium** $\hat{y}_t(x)$ with equilibrium strategies

$$\hat{y}_{t,i}(x) = \begin{cases} 0 & \text{if firm } i \text{ is inactive,} \\ \frac{\hat{p}_t(x) - c_i}{b} \in (0, x_i) & \text{if firm } i \text{ is unconstrained,} \\ x_i & \text{if firm } i \text{ is constrained.} \end{cases}$$

Upper-level problem: Nonsmooth nonconvex (G)NEP

The upper-level problem of firm *i* is then given by

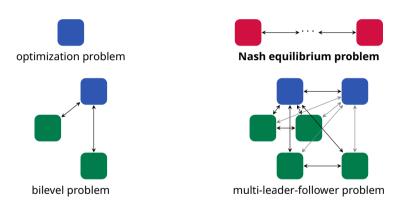
$$\max_{x_i} \sum_{t=1}^{I} w_t \cdot \left(\hat{P}_t(x) \cdot \hat{y}_{t,i}(x) - c_i \cdot \hat{y}_{t,i}(x) \right) - \underbrace{S_i(x_i, \mathbf{x}_{-i}) \cdot x_i}_{t=1} \quad \text{s.t.} \quad x_i \ge 0.$$

Challenges:

- The lower-level production gains can have kinks.
- ► The lower-level production gains can be nonconvex.
- ► Technical capacities at input nodes can result in shaRot1 constraints.

Observation: The hierarchical bilevel structure introduces new challenges. (\rightarrow Martin, Lars)

Recap: Systems of coupled optimization problems



Literature

► The primer on Nash equilibrium problems is based on the book **Spieltheorie: Theorie und Verfahren zur Lösung von Nash- und verallgemeinerten Nash-Gleichgewichtsproblemen** by C. Kanzow, A.S. (Birkhäuser Verlag).

For an English and slightly extended version, contact me at alexandra.schwartz@tu-dresden.de.

► The multi-leader multi-follower example is based on the article A tractable multi-leader multi-follower peak-load-pricing model with strategic interaction by V. Grimm, D. Nowak, L. Schewe, M. Schmidt, A.S., G. Zöttl (MathProg 2021).