
A Gentle and Incomplete Introduction to Bilevel Optimization
… and Some New Results

Martin Schmidt

TRR 154 Autumn School on Equilibrium Problems
Berlin — November 6, 2025

1



Agenda

1. What is bilevel optimization anyway?

2. Some theory of linear bilevel problems

3. How do you solve a linear bilevel problem?

4. Connections between robust and bilevel optimization

5. The burial of coupling constraints in linear bilevel optimization
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Background Material

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization
In: EURO Journal on Computational Optimization. 2021

Jointly with Thomas Kleinert, Martine Labbé, and Ivana Ljubic

A Gentle and Incomplete Introduction to Bilevel Optimization
Publicly available lectures notes

Jointly with Yasmine Beck
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What is bilevel optimization anyway?



“Usual” single-level problems

min
x∈Rn

f (x)

s.t. g(x) ≥ 0

h(x) = 0

• only one objective function f
• one vector of variables x
• one set of constraints g and h

This models a situation in which a single decision maker takes all decisions,
i.e., decides on the variables of the problem.

Very often, that’s appropriate:

• a single dispatcher controls a gas transport network
• a single investment bank decides on the assets in a portfolio
• a single logistics company decides on its supply chain
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Often, life’s different

• Many situations in our day-to-day life are different
• Often:

• A decision maker makes a decision …
• … while anticipating the (rational, i.e., optimal) reaction of another decision maker
• The decision of the other decision maker depends on the first decision

• Thus: the outcome (or in more mathematical terms, the objective function and/or feasible set)
depends on the decision/reaction of the other decision maker

Formalizing this situation leads to hierarchical or bilevel optimization problems
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Informal example: Pricing

• A very rich class of applications of bilevel optimization
• First decision maker (leader)

• decides on a price of a certain good
(or maybe on different prices for multiple goods)

• goal: maximize revenue from selling these goods

• Second decision maker (follower)
• decides on purchasing the goods of the leader to generate some utility

Thus, …

• the leader’s decision depends on the optimal reaction of the follower

• the decision of the follower depends on the (pricing) decisions of the leader
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Anti Drug Smuggling

• Graph models the network of drug smuggling routes

• Smugglers want to maximize the flow of drugs from an origin to a destination

• Follower: maximum flow (= amount of drugs) problem

• Leader: Interdiction of certain parts of the drug smuggling routes

• Goal of the leader: minimize the maximum flow

• Leader only has a certain budget

• … and maybe incomplete information about the follower’s problem

7



Anti Drug Smuggling

• Graph models the network of drug smuggling routes

• Smugglers want to maximize the flow of drugs from an origin to a destination

• Follower: maximum flow (= amount of drugs) problem

• Leader: Interdiction of certain parts of the drug smuggling routes

• Goal of the leader: minimize the maximum flow

• Leader only has a certain budget

• … and maybe incomplete information about the follower’s problem

7



Anti Drug Smuggling

8



A bit more formal, please

Definition (Bilevel optimization problem)

A bilevel optimization problem is given by

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

S(x): set of optimal solutions to the x-parameterized problem

min
y∈Y

f (x, y)

s.t. g(x, y) ≥ 0
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A bit more formal, please … continued

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

… and …

S(x) = argmin
y∈Y

{f (x, y) : g(x, y) ≥ 0}

Wording

• First problem: so-called upper-level (or
the leader’s) problem

• Second problem is the so-called
lower-level (or the follower’s) problem

• Both problems are parameterized by
the decisions of the other player

• x ∈ Rnx : upper-level variables
• decisions of the leader

• y ∈ Rny : lower-level variables
• decisions of the follower

10



A bit more formal, please … continued

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

… and …

S(x) = argmin
y∈Y

{f (x, y) : g(x, y) ≥ 0}

Functions and dimensions

• Objective functions
• F, f : Rnx × Rny → R

• Constraint functions
• G : Rnx × Rny → Rm
• g : Rnx × Rny → R`

• The sets X ⊆ Rnx and Y ⊆ Rny
are often used to denote
integrality constraints.

• Example: Y = Zny makes the lower-level
problem an integer program
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A bit more formal, please … continued

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

… and …

S(x) = argmin
y∈Y

{f (x, y) : g(x, y) ≥ 0}

Definition

1. We call upper-level constraints
Gi(x, y) ≥ 0, i ∈ {1, . . . ,m}, coupling
constraints if they explicitly depend on
the lower-level variable vector y.

2. All upper-level variables that appear in
the lower-level constraints are called
linking variables.
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Optimal value function

reformulation

Instead of using the point-to-set mapping S …

one can also use the so-called optimal-value function

ϕ(x) := min
y∈Y

{f (x, y) : g(x, y) ≥ 0}

and re-write the bilevel problem as

min
x∈X,y∈Y

F(x, y)

s.t. G(x, y) ≥ 0, g(x, y) ≥ 0

f (x, y) ≤ ϕ(x)
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Shared constraint set, bilevel feasible set, inducible region

Definition

The set
Ω := {(x, y) ∈ X × Y : G(x, y) ≥ 0, g(x, y) ≥ 0}

is called the shared constraint set.

Its projection onto the x-space is denoted by

Ωx := {x : ∃y with (x, y) ∈ Ω} .

Definition

The set
F := {(x, y) : (x, y) ∈ Ω, y ∈ S(x)}

is called the bilevel feasible set or inducible region.
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Single-level relaxation

Definition

The problem of minimizing the upper-level objective function over the shared constraint set, i.e.,

min
x,y

F(x, y)

s.t. (x, y) ∈ Ω,

is called the single-level relaxation (SLR) of the bilevel problem.

Remark

• The single-level relaxation is identical to the original bilevel problem except for the
constraint y ∈ S(x), i.e., except for the lower-level optimality.

• Thus, it is indeed a relaxation.
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Pricing revisited

• First bilevel pricing problem with linear constraints, linear upper-level objective, and bilinear
lower-level objective: Bialas and Karwan (1984)

• Here: a more general version taken from Labbé et al. (1998)

max
x,y=(y1,y2)

x>y1

s.t. Ax ≤ a

y ∈ argmin
ȳ

{
(x + d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 + D2ȳ2 ≥ b

}
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}

• Vector y of lower-level variables is partitioned into two sub-vectors y1 and y2, called plans,
that specify the levels of some activities such as purchasing goods or services

• Upper-level player influences the activities of plan y1 through the price vector x that is
additionally imposed onto y1

• Goal of the leader is to maximize her revenue given by x>y1
• Price vector x is subject to linear constraints that may, among others, impose lower and upper
bounds on the prices
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s.t. Ax ≤ a

y ∈ argmin
ȳ

{
(x + d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 + D2ȳ2 ≥ b

}
• The vectors d1 and d2 represent linear disutilities faced by the lower-level player
when executing the activity plans y1 as well as y2

• d2 may also encompass the price for executing the activities not influenced by the leader
• These activities may, e.g., be substitutes offered by competitors for which prices are known and fixed

• The lower-level player determines his activity plans y1 and y2 to minimize the sum of total
disutility and the price paid for plan y1 subject to linear constraints

• To avoid the situation in which the leader would maximize her profit by setting prices to infinity
for these activities y1 that are essential, one may assume that the set {y2 : D2y2 ≥ b} is
non-empty
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Anti Drug Smuggling Revisited

Follower: w-parameterized maximum flow problem

ϕ(w) := max
f∈R|A|

∑
a∈δout(s)

fa −
∑

a∈δin(s)

fa

s.t.
∑

a∈δout(v)

fa −
∑

a∈δin(v)

fa = 0, v ∈ V \ {s, t}

fa ≤ ca(1− wa), a ∈ A

fa ≥ 0, a ∈ A

Leader: Maximum flow interdiction

min
w∈{0,1}|A|

ϕ(w)

s.t.
∑
a∈A

wa ≤ B
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An Academic and Linear Example (Kleinert 2021)

Upper-level problem

min
x,y

F(x, y) = x + 6y

s.t. − x + 5y ≤ 12.5

x ≥ 0

y ∈ S(x)

Lower-level problem

min
y

f (x, y) = −y

s.t. 2x − y ≥ 0

− x − y ≥ −6

− x + 6y ≥ −3

x + 3y ≥ 3

20



An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)

• Shared constrained set: gray area

• Green and red lines: nonconvex set of
optimal follower solutions
(lifted to the x-y-space)

• Green lines: Nonconvex and
disconnected bilevel feasible set of the
bilevel problem
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An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)

1. The feasible region of the follower
problem corresponds to the gray area.

2. The follower’s problem—and therefore
the bilevel problem—is infeasible for
certain decisions of the leader, e.g.,
x = 0.

3. The set {(x, y) : x ∈ Ωx, y ∈ S(x)}
denotes the optimal follower solutions
lifted to the x-y-space, and is given by
the green and red facets.

4. This set is nonconvex!
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An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)

5. The single leader constraint (dashed
line) renders certain optimal responses
of the follower infeasible.

6. The bilevel feasible region F
corresponds to the green facets.

7. Thus, the feasible set is not only
nonconvex but also disconnected.

8. The optimal solution is (3/7, 6/7) with
objective function value 39/7.

9. In contrast, ignoring the follower’s
objective, i.e., solving the single-level
relaxation, yields the optimal
solution (3, 0) with objective function
value 3. Note that the latter point is not
bilevel feasible.
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Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

min
x,y∈R

x

s.t. y ≥ 0.5x + 1, x ≥ 0

y ∈ argmin
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 0.5}

Optimal solution: (2, 2)

y

x
1 2 3

1

2

3

leader

follower
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Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

• Strengthening ȳ ≥ 0.5 in the lower-level
problem using y ≥ 0.5x + 1 of the
upper-level problem

• This yields the minimum value of
0.5x + 1 is 1 due to x ≥ 0

• New bound of ȳ is ȳ ≥ 1

• Single-level relaxation stays the same

min
x,y∈R

x

s.t. y ≥ 0.5x + 1, x ≥ 0,

y ∈ argmin
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 1},

Optimal solution: (0, 1) 6= (2, 2)

y

x
1 2 3

1

2

3

leader

follower

y

x
1 2 3

1

2

3

leader

follower
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A Brief History of Complexity Results

• Jeroslow (1985): hardness of general multilevel models

• Corollary: NP-hardness of the LP-LP bilevel problem
• Hansen et al. (1992): LP-LP bilevel problems are strongly NP-hard

• reduction from KERNEL

• Vicente et al. (1994): even checking whether a given point is a local minimum of a bilevel
problem is NP-hard

26



Some theory of linear bilevel problems



The linear bilevel problem

We now consider LP-LP bilevel problems of the form

min
x,y

c>x x + c>y y

s.t. Ax ≥ a,

y ∈ argmin
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
with cx ∈ Rnx , cy,d ∈ Rny , A ∈ Rm×nx , and a ∈ Rm as well as C ∈ R`×nx , D ∈ R`×ny , and b ∈ R`.

Remark

This problem does not contain coupling constraints to avoid the further difficulties that arise due
to disconnected bilevel feasible sets.
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The first structural result

• Our goal now is to understand the geometric properties of LP-LP bilevel problems.

• The main source of the remainder of this section is the book by Bard (1998).

Theorem

Suppose that the shared constraint set is non-empty and bounded. The bilevel-feasible set can
then be equivalently written as the intersection of the shared constraint set with the feasible points
of a piecewise linear equality constraint. In particular, the bilevel-feasible set is a union of faces of
the shared constraint set.
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The Academic Example Revisited

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)
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The first structural result: proof

We start by first re-writing the bilevel-feasible set

F := {(x, y) : (x, y) ∈ Ω, y ∈ S(x)}

explicitly as

F :=

{
(x, y) : (x, y) ∈ Ω, d>y = min

ȳ
{d>ȳ : Cx + Dȳ ≥ b}

}
and use the optimal-value function

ϕ(x) = min
y

{
d>y : Dy ≥ b− Cx

}
again.

By using the strong-duality theorem, we can also express the optimal-value function by means of
the dual LP as

ϕ(x) = max
λ

{
(b− Cx)>λ : D>λ = d, λ ≥ 0

}
.

30
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F := {(x, y) : (x, y) ∈ Ω, y ∈ S(x)}

explicitly as

F :=

{
(x, y) : (x, y) ∈ Ω, d>y = min

ȳ
{d>ȳ : Cx + Dȳ ≥ b}
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The first structural result: proof

From the classic theory of linear optimization we know that the optimal solution is attained in one
of the vertices of the feasible set,

which, for the dual LP, does not depend on the leader’s decision x
anymore.

Let λ1, . . . , λs be the set of all the dual polyhedron’s vertices, i.e., the set of vertices of the
polyhedron defined by

D>λ = d, λ ≥ 0.

Thus, we can further equivalently re-write the optimal-value function as

ϕ(x) = max
{
(b− Cx)>λ : λ ∈ {λ1, . . . , λs}

}
.

This shows that ϕ(x) is a piecewise linear function and re-writing the bilevel-feasible set as

F =
{
(x, y) ∈ Ω: d>y − ϕ(x) = 0

}
shows the claim that the bilevel-feasible set can be written as the intersection of the shared
constraint set with a piecewise linear equality constraint.
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The first structural result: proof

Consider now again the definition of the optimal-value function using the vertices
of the dual polyhedron of the lower-level problem.

Suppose that for a given x the corresponding solution is the vertex λk.

By using dual feasibility, we obtain

0 = d>y − ϕ(x) = (D>λk)>y − (λk)>(b− Cx) = (λk)>(Cx + Dy − b).

Thus, for those λki , i ∈ {1, . . . , `}, with λki > 0 we get (Cx + Dy − b)i = 0.

Hence, the bilevel-feasible set is a union of faces of the shared constraint set.
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In other words …

Corollary

Suppose that the assumptions of the last theorem hold. Then, the LP-LP bilevel problem is
equivalent to minimizing the upper-level’s objective function over the intersection of the shared
constraint set with a piecewise linear equality constraint.

Corollary

Suppose that the assumptions of the last theorem hold. Then, a solution of the LP-LP bilevel
problem is always attained at a vertex of the bilevel-feasible set.
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Solutions appear at vertices of the HPR

Theorem

Suppose that the assumptions of the last theorem hold. Then, a solution (x∗, y∗) of the LP-LP
bilevel problem is always attained at a vertex of the shared constraint set Ω.
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Solutions appear at vertices of the HPR: proof

Let (x1, y1), . . . , (xr, yr) be the distinct vertices of the shared constraint set Ω.

Since Ω is a convex polyhedron, any point in Ω can be written as a convex combination of these
vertices, i.e.,

(x∗, y∗) =
r∑
i=1

αi(xi, yi)

with
r∑
i=1

αi = 1 and αi ≥ 0 for all i = 1, . . . , r.

From the proof of the last theorem it follows that the optimal-value function ϕ is convex and
continuous.
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Solutions appear at vertices of the HPR: proof

Since the bilevel solution (x∗, y∗) is, of course, bilevel feasible, we obtain

0 = d>y∗ − ϕ(x∗)

= d>
(

r∑
i=1

αiyi
)

− ϕ

(
r∑
i=1

αixi
)

≥
r∑
i=1

αid>yi −
r∑
i=1

αiϕ(xi)

=
r∑
i=1

αi

(
d>yi − ϕ(xi)

)
.

By the definition of the optimal-value function we also have

ϕ(xi) = min
y

{
d>y : Cxi + Dy ≥ b

}
≤ d>yi.

This implies d>yi − ϕ(xi) ≥ 0.
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Solutions appear at vertices of the HPR: proof

Consequently, for all i ∈ {1, . . . , r} with αi > 0 it holds d>yi = ϕ(xi) since we otherwise get a
contradiction on the last slide.

Hence, for those i with αi > 0 we obtain (xi, yi) ∈ F .

From the last corollary we know that (x∗, y∗) is a vertex of the bilevel-feasible set. Suppose now
that there are two indices i and j with αi > 0 and αj > 0.

Thus, (xi, yi) ∈ F and (xj, yj) ∈ F holds and we can write (x∗, y∗) as a proper convex combination of
two bilevel feasible points, which is a contradiction to the last corollary.

Thus, (x∗, y∗) is a vertex of the shared constraint set.
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How do you solve a linear bilevel
problem?



Using optimality conditions

Most classic approach to obtain a single-level reformulation:

Exploit optimality conditions for the lower-level problem

• These optimality conditions need to be necessary and sufficient

• This is usually only possible for convex lower-level problems
that satisfy a reasonable constraint qualification
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An LP-LP Bilevel Problem

• Let’s keep it simple: KKT reformulation of an LP-LP bilevel

• Consider

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a,

y ∈ argmin
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
• Data: cx ∈ Rnx , cy,d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , and a ∈ Rm as well as C ∈ R`×nx , D ∈ R`×ny ,
and b ∈ R`
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KKT reformulation of LP-LP bilevel problems

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a

y ∈ argmin
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}

Lower-level problem can be seen as the x-parameterized linear problem

min
y

d>y s.t. Dy ≥ b− Cx

Its Lagrangian function is given by

L(y, λ) = d>y − λ>(Cx + Dy − b)
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ȳ

{
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KKT reformulation of LP-LP bilevel problems

The KKT conditions of the lower level are given by …

• dual feasibility
D>λ = d, λ ≥ 0

• primal feasibility
Cx + Dy ≥ b

• and the KKT complementarity conditions

λi(Ci·x + Di·y − bi) = 0 for all i = 1, . . . , `
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KKT reformulation of LP-LP bilevel problems

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

D>λ = d, λ ≥ 0

λi(Ci·x + Di·y − bi) = 0 for all i = 1, . . . , `

• We now optimize over an extended space of variables including the lower-level dual variables λ

• Since we optimize over x, y, and λ simultaneously, any global solution of the problem above
corresponds to an optimistic bilevel solution

• The KKT reformulation is linear except for the KKT complementarity conditions

• Thus, the problem is a nonconvex NLP
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KKT reformulation of LP-LP bilevel problems

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

D>λ = d, λ ≥ 0

λi(Ci·x + Di·y − bi) = 0 for all i = 1, . . . , `

• …
• Thus, the problem is a nonconvex NLP

It is even worse! It’s a mathematical program with complementarity constraints (an MPCC).

Bad news (Ye and Zhu 1995)

Standard NLP algorithms usually cannot be applied for such problems since classic constraint
qualifications like the Mangasarian–Fromowitz or the linear independence constraint qualification
are violated at every feasible point.
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How to solve the KKT reformulation?

Remember

The “only” reason for the nonconvexity of the KKT reformulation are the bilinear products of the
lower-level dual variables λi and the upper-level primal variables x in the term

λiCi·x

and the bilinear products of the lower-level dual variables λi and the lower-level primal variables y
in the term

λiDi·y.
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How to solve the KKT reformulation?

Key idea: Linearize these terms by exploiting the combinatorial structure of the KKT
complementarity conditions.

The complementarity conditions

λi(Ci·x + Di·y − bi) = 0, i = 1, . . . , `

can be seen as disjunctions stating that either

λi = 0 or Ci·x + Di·y = bi

needs to hold.

These two cases can be modeled using binary variables

zi ∈ {0, 1}, i = 1, . . . , `,

in the following mixed-integer linear way:

λi ≤ Mzi, Ci·x + Di·y − bi ≤ M(1− zi).

Here, M is a sufficiently large constant.
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How to solve the KKT reformulation?

By construction, we get the following result.

Theorem

Suppose that M is a sufficiently large constant. Then, the KKT reformulation is equivalent to the
mixed-integer linear optimization problem

min
x,y,λ,z

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d, λ ≥ 0,

λi ≤ Mzi for all i = 1, . . . , `,

Ci·x + Di·y − bi ≤ M(1− zi) for all i = 1, . . . , `,

zi ∈ {0, 1} for all i = 1, . . . , `.
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Be careful!
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Connections between robust and
bilevel optimization



Dagstuhl Seminar “Optimization at the Second Level”: Survey Results

Question:

“What are the best and the worst aspects of this seminar?”

Answer (by one of the participants):

“Best: Very active audience with a lot of questions.

Worst: Found out that robust optimization is just a special case of bilevel optimization”
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Later on Twitter
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Later on Twitter
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We wanted to find out!

Marc Goerigk Jannis Kurtz Johannes Thürauf
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Optimistic Bilevel Optimization (Dempe 2002)

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0

y ∈ S(x)

S(x): set of solutions to the x-parameterized problem

min
y

f (x, y)

s.t. g(x, y) ≤ 0
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Pessimistic Bilevel Optimization (Wiesemann et al. 2013)

min
x

max
y∈S(x)

F(x, y)

s.t. G(x, y′) ≤ 0 ∀y′ ∈ S(x)

S(x): set of solutions to the x-parameterized problem

min
y

f (x, y)

s.t. g(x, y) ≤ 0
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Robust Optimization

min
x

H(x)

s.t. hi(x,ui) ≤ 0 ∀i ∈ I, ∀ui ∈ Ui
hj(x) ≤ 0 ∀j ∈ J

Important Case

Decision-dependent uncertainty: Ui = Ui(x)

Standard Assumptions

• For every robust feasible point x and every i ∈ I, the constraint functions hi(x, ·) are continuous

• For i ∈ I, the uncertainty set Ui(x) is non-empty and compact
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Main Research Question

If P is an instance of problem class P

and if A is an algorithm for solving instances of problem class Q,

can then A also be used to solve P?

One can use an algorithm A

for solving optimistic bilevel optimization problems Q

for solving a strictly robust optimization problem P.
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Bilevel Methods can Solve Decision-Dependent Robust Problems

Theorem

Let the standard assumptions be satisfied. Let further (x∗,u∗) be a solution to the optimistic bilevel
problem

min
x,u

H(x)

s.t. hi(x,ui) ≤ 0 ∀i ∈ I,

hj(x) ≤ 0 ∀j ∈ J,

u ∈ S(x)

where S(x) is the set of solutions to the x-parameterized lower-level problem

max
u=(ui)i∈I

∑
i∈I

hi(x,ui) s.t. ui ∈ Ui(x) ∀i ∈ I.

Then, x∗ is a solution to the strictly robust optimization problem with decision-dependent
uncertainty sets Ui(x), i ∈ I.
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Some Remarks

• Both “standard” as well as decision-dependent uncertainty sets can be tackled

• Uncertain constraints with concave dependence on u and non-empty interior of the
uncertainty sets lead to convex lower levels satisfying Slater’s CQ

• The bilevel problem from the theorem is an optimistic one.
Using a pessimistic one, the lower level can even have a constant objective function

min
x

max
u∈S(x)

H(x)

s.t. hi(x,ui) ≤ 0 ∀i ∈ I, ∀u = (ui)i∈I ∈ S(x)

hj(x) ≤ 0 ∀j ∈ J

S(x): set of solutions to the x-parameterized lower-level problem

min
u=(ui)i∈I

42 s.t. ui ∈ Ui(x) ∀i ∈ I
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And the other way around?

Theorem

Let (x∗, y∗) be a solution to the strictly robust problem

min
x,y

F(x, y)

s.t. f (x, y) ≤ f (x, ỹ) ∀ỹ ∈ U(x),

G(x, y) ≤ 0,

g(x, y) ≤ 0,

where the decision-dependent uncertainty set is given by

U(x) :=
{
ỹ ∈ Rny : g(x, ỹ) ≤ 0

}
.

Then, (x∗, y∗) is a solution to the optimistic bilevel problem.
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First Main Result

Optimistic bilevel optimization

and

strictly robust optimization with decision-dependent uncertainty sets

are equivalent!

PS: Both are equivalent to generalized semi-infinite optimization.
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What about pessimistic bilevel problems?

Theorem

A solution to the pessimistic bilevel problem can be computed by solving the following strictly
robust problem with decision-dependent uncertainty set

min
x,y

F(x, y)

s.t. F(x, y) ≥ F(x, y′) ∀y′ ∈ U(x)

G(x, y′) ≤ 0 ∀y′ ∈ U(x)

f (x, y) ≤ f (x, y′) ∀y′ ∈ U(x)

G(x, y) ≤ 0

g(x, y) ≤ 0

with uncertainty set
U(x) := {ỹ : f (x, ỹ) ≤ χ(x), g(x, ỹ) ≤ 0} .

Here, χ(x) is the optimal-value function of the x-parameterized lower-level problem.
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Two-Stage Robust Optimization

• Uncertainty is still handled in a strict way
• Decisions are split

• here-and-now
• wait-and-see

• Ben-Tal, Goryashko, Guslitzer, Nemirovski (2004), Bertsimas, Den Hertog (2022)

min
x∈X

max
u∈U

min
y∈Y(x,u)

H(x, y)

with

Y(x,u) =
{
y ∈ Rny : h(x, y,u) ≤ 0

}
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Robust Bilevel Problems

Important difference:

1. Wait-and-see follower

2. Here-and-now follower

Robust bilevel problem with wait-and-see follower

min
x∈X

max
u∈U(x)

min
y

{F(x, y) : y ∈ S(x,u)}

S(x,u): set of solutions to the (x,u)-parameterized problem

min
y

f (x, y) s.t. g(x, y,u) ≤ 0
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Robust Bilevel vs. Two-Stage-Robust Problems

Theorem

Let x∗ be a solution to the optimistic robust bilevel problem with wait-and-see follower

min
x∈X

max
u∈U(x)

min
y

{H(x, y) : y ∈ S(x,u)}

where X ⊆ Rnx , U(x) ⊆ Rnu , and S(x,u) is the set of solutions to the (x,u)-parameterized lower-level
problem

min
y

H(x, y) s.t. h(x, y,u) ≤ 0.

Then, x∗ is a solution to the two-stage robust problem with decision-dependent uncertainty set U(x).

The other direction again requires using optimal-value functions.
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Min-Max-Regret Optimization

min
x

max
u∈U

{
H(x,u)− min

{y : h(y,u)≤0}
H(y,u)

}
s.t. h(x,u) ≤ 0 ∀u ∈ U

Theorem

Let (x∗, y∗) be a solution to the pessimistic bilevel problem

min
x

{
max

(y1,y2)∈S(x)
H(x, y1)− H(y2, y1) : h(x, y′1) ≤ 0 ∀y′ = (y′1, y′2) ∈ S(x)

}
with y = (y1, y2) and S(x) = argminy{42 : y1 ∈ U,h(y2, y1) ≤ 0}.

Then, x∗ is a solution to the regret problem.
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Min-Max-Regret Optimization

Min-max regret criterion is most commonly defined with uncertainty only in the objective

• Aissi et al. (2009), Kasperski and Zieliński (2016), Kouvelis and Yu (2013)

Theorem

Let (x∗, y∗) be a solution to the optimistic bilevel problem

min
x,y∈S(x)

{H(x, y1)− H(y2, y1) : h(x) ≤ 0}

with y = (y1, y2) and S(x) = argminy{H(y2, y1)− H(x, y1) : y1 ∈ U,h(y2) ≤ 0}.

Then, x∗ is a solution to the regret problem without uncertainty in the constraints.
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That’s what we know now

Strictly Robust
Optimization

Decision-Dependent
Strictly Robust
Optimization

Regret
Optimization

Two-Stage
Robust

Optimization

Pessimistic Bilevel
Optimization

Optimistic Bilevel
Optimization

Robust Bilevel Optimization
(wait-and-see follower)
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The burial of coupling constraints in
linear bilevel optimization



The Team

Henri Lefebvre

Dorothee Henke

Johannes Thürauf
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Do we “Really” Increase Modeling Capabilities by Using Coupling Constraints?

Spoiler: No!

Why not?

For every given linear bilevel optimization problem with coupling constraints, we derive …

• a linear bilevel problem without coupling constraints

• that has the same set of optimal solutions
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The Details
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Re-Writing the Problem

Upper level

min
x,y,ε

c>x + d>y

s.t. x ∈ X

ε = 0

(y, ε) ∈ S̃(x)

(R)

Lower level

min
y,ε

f>y

s.t. Ax + By + εe ≥ a

Cx + Dy ≥ b

ε ≥ 0

Lemma

For every bilevel feasible point (x, y) of the
original bilevel problem, the point (x, y, 0) is
bilevel feasible for Problem (R) with the same
objective value. For every bilevel feasible
point (x, y, ε) of Problem (R), the point (x, y) is
bilevel feasible for the original bilevel problem
with the same objective value.
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Re-Writing the Problem & Penalize

Theorem

There is a finite and poly-sized parameter κ > 0 (in the bit-encoding length of the problem’s data)
so that the bilevel problem (without coupling constraints)

min
x,y,ε

c>x + d>y + κε

s.t. x ∈ X, (y, ε) ∈ S̃(x)
(P)

has the same set of optimal solutions as Problem (R).

That’s surprising!

• Reason #1
• Feasible region of the original problem is nonconvex and disconnected
• Ye and Zhu (1995): no constraint qualification is satisfied
• Exact penalization usually fails!

• Reason #2
• Exact penalty functions are usually nonsmooth (à la `1)
• Our penalty function is perfectly smooth (even linear)
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Proof Idea

1. We derive a single-level reformulation of the bilevel problem (R),
using the KKT conditions of the follower’s problem.

2. We apply results from augmented Lagrangian duality theory for mixed-integer linear problems
to show that a poly-sized exact penalization parameter exists.

3. We show that the resulting mixed-integer linear program is nothing
but the KKT reformulation of Problem (P).
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Proof

• Lower-level problem of Problem (R) is an LP
• Dempe and Dutta (2012): Replace it with its KKT conditions

min
x,y,ε

c>x + d>y

s.t. x ∈ X, ε = 0

Ax + By + εe ≥ a, Cx + Dy ≥ b, ε ≥ 0

B>λ+ D>µ = f , e>λ+ η = 0

λ, µ, η ≥ 0,

λ>(Ax + By + εe− a) = 0, µ>(Cx + Dy − b) = 0, ηε = 0

• Additional binary variables zλ, zµ, zη

• Sufficiently large big-M

λ ≤ (1− zλ)M, µ ≤ (1− zµ)M, η ≤ (1− zη)M

Ax + By + εe− a ≤ zλM, Cx + Dy − b ≤ zµM, ε ≤ zηM
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Wait! Are we Cheating?

• Pineda and Morales (2019): Heuristics for computing big-M values usually fail

• Kleinert et al. (2020): Validating the correctness of a given big-M is as hard as the original
bilevel problem

But …

• Buchheim (2023): valid and poly-sized M can be computed in polynomial time
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Proof … Continued

We have the MILP

min
x,y,ε,zλ,zµ,zη

c>x + d>y

s.t. x ∈ X, ε = 0

Ax + By + εe ≥ a, Cx + Dy ≥ b, ε ≥ 0

B>λ+ D>µ = f , e>λ+ η = 0, λ, µ, η ≥ 0

λ ≤ (1− zλ)M, µ ≤ (1− zµ)M, η ≤ (1− zη)M

Ax + By + εe− a ≤ zλM, Cx + Dy − b ≤ zµM, ε ≤ zηM

`∞ penalization of the coupling constraint ε = 0

min
x,y,ε

c>x + d>y + κε

s.t. all constraints except from ε = 0
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Proof … Continued: What About κ?

Feizollahi et al. (2016)

• Theorem 4: duality gap for the augmented
Lagrangian dual of a solvable (mixed-integer)
linear optimization problem can be closed by
using a norm as the augmenting function
and a sufficiently large but finite penalty
parameter.

• Proposition 1: Optimal solutions of MILP
reformulation and the `∞ penalty problem
are the same

Gu et al. (2020)

• Theorem 22: Penalty parameter can be
chosen to be of polynomial size in case of
the `∞-norm
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Proof … Continued: Back to the Slide Before

We have the MILP

min
x,y,ε,zλ,zµ,zη

c>x + d>y

s.t. x ∈ X, ε = 0,

Ax + By + εe ≥ a, Cx + Dy ≥ b, ε ≥ 0

B>λ+ D>µ = f , e>λ+ η = 0, λ, µ, η ≥ 0

λ ≤ (1− zλ)M, µ ≤ (1− zµ)M, η ≤ (1− zη)M

Ax + By + εe− a ≤ zλM, Cx + Dy − b ≤ zµM, ε ≤ zηM

`∞ penalization of the coupling constraint ε = 0

min
x,y,ε

c>x + d>y + κε

s.t. all constraints except from ε = 0

This is the KKT reformulation of the bilevel problem from the theorem!
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κ … One More Time!

Feizollahi et al. (2016) & Gu et al. (2020)

Existence of finite and poly-sized
exact penalty parameter.

Open (until last year)

Can it be computed in polynomial time?

Yes! Lemma 4 of Lefebvre and Schmidt (2024)
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And what about the pessimistic case?
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Optimistic Bilevel Problems with and without Coupling Constraints

Optimistic bilevel problem without coupling constraints

min
x∈X

Fo(x) := c>x +min
y

{
d>y : y ∈ S(x)

}
S(x): set of optimal solutions to the x-parameterized optimization problem

min
y

f>y s.t. Cx + Dy ≥ b

Optimistic bilevel problem with coupling constraints

min
x∈X

Foc(x) := c>x +min
y

{
d>y : y ∈ S(x), Ax + By ≥ a

}
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Pessimistic Bilevel Problems with and without Coupling Constraints

Pessimistic bilevel problem without coupling constraints

min
x∈X̄

Fp(x) := c>x +max
y

{
d>y : y ∈ S(x)

}
with

X̄ := X ∩ {x : S(x) 6= ∅}

Pessimistic bilevel problem with coupling constraints

min
x∈X̄

Fpc(x) := c>x

s.t. Ax + By ≥ a for all y ∈ S(x)
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Pessimistic Bilevel Problems with and without Coupling Constraints

Pessimistic bilevel problem without coupling constraints

min
x∈X̄

Fp(x) := c>x +max
y

{
d>y : y ∈ S(x)

}
with

X̄ := X ∩ {x : S(x) 6= ∅}

Pessimistic bilevel problem with coupling constraints

min
x∈X̄
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Bye bye, coupling constraints …

Pessimistic with
coupling constraints

Optimistic with
coupling constraints

Optimistic without
coupling constraints

Pessimistic without
coupling constraints

à la Zeng (2020)

“old” paperGoal
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From Pessimistic to Optimistic Bilevel Optimization with Coupling Constraints

The pessimistic coupling constraint

Ax + By ≥ a for all y ∈ S(x)

is equivalent to

Ai·x + Bi·y ≥ ai for all y ∈ S(x) and all i ∈ [m] := {1, . . . ,m} .

Lemma (à la Zeng (2020))

Let x ∈ X be given and consider a fixed i ∈ [m]. Then, x satisfies the i-th coupling constraint if and
only if there exist ȳ and

yi ∈ argmin
{
Bi·y : Dy ≥ b− Cx, f>y ≤ f>ȳ

}
that satisfy

Dȳ ≥ b− Cx, Bi·yi ≥ ai − Ai·x.
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yi ∈ argmin
{
Bi·y : Dy ≥ b− Cx, f>y ≤ f>ȳ
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From Pessimistic to Optimistic Bilevel Optimization with Coupling Constraints

Theorem

Let S be the set of globally optimal solutions to the pessimistic bilevel problem with coupling
constraints. Moreover, let S̃ be the set of globally optimal solutions to the optimistic single-leader
multi-follower problem

min
(x,ȳ)∈X̃

c>x +min
y

{
0 : yi ∈ S̃i(x, ȳ), Bi·yi ≥ ai − Ai·x for all i ∈ [m]

}
with X̃ = {(x, ȳ) : x ∈ X,Dȳ ≥ b− Cx}, S̃i(x, ȳ) = argminy′{Bi·y′ : Dy′ ≥ b− Cx, f>y′ ≤ f>ȳ}, and
y = (yi)mi=1. Let Ŝ be the set of globally optimal solutions to the optimistic bilevel problem

min
(x,ȳ)∈X̃

c>x +min
y

{
0 : y ∈ Ŝ(x, ȳ), Bi·yi ≥ ai − Ai·x for all i ∈ [m]

}
,

where Ŝ(x, ȳ) denotes the set of optimal solutions to the aggregated lower-level problem

min
y

m∑
i=1

Bi·yi s.t. Dyi ≥ b− Cx, f>yi ≤ f>ȳ for all i ∈ [m].

Then, S = projx(S̃) = projx(Ŝ) holds and all optimal objective function values coincide. 86



From Optimistic Bilevel Optimization with to without Coupling Constraints

Theorem (Simply apply the “old” optimistic result …)

There is a poly-sized penalty parameter κ > 0 so that the optimistic bilevel problem with coupling
constraints has the same set of globally optimal solutions as the optimistic bilevel problem

min
x∈X

c>x +min
y,ε

{
d>y + κε : (y, ε) ∈ S′(x)

}
without coupling constraints, where S′(x) is the set of optimal solutions to the x-parameterized
lower-level problem

min
y,ε

f>y

s.t. Ax + By + εe ≥ a,

Cx + Dy ≥ b,

ε ≥ 0,

where e is the vector of all ones in appropriate dimension. Moreover, both bilevel problems have
the same optimal objective function value.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Let’s consider

min
(x,ȳ)∈X̃

Foa(x, ȳ) := c>x + d>ȳ +min
y,ε

{
0 : ε = 0, (y, ε) ∈ S̃(x, ȳ)

}
(AUX-UL)

with a single coupling constraint. Again, we use X̃ = {(x, ȳ) : x ∈ X,Dȳ ≥ b− Cx} and S̃(x, ȳ) denotes
the set of optimal points to

min
y,ε

f>y

s.t. Cx + Dy ≥ b, f>ȳ − f>y = ε, ε ≥ 0.
(AUX-LL)

Lemma

For every bilevel feasible point x of the optimistic bilevel problem without coupling constraints, the
point (x, ȳ) with ȳ ∈ argminy{d>y : y ∈ S(x)} is also bilevel feasible for the optimistic bilevel
problem (AUX-UL) with the same objective value. Moreover, for every globally optimal point (x, ȳ) to
Problem (AUX-UL), x is bilevel feasible for the optimistic bilevel problem without coupling
constraints with the same objective value.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Lemma

There is a poly-sized parameter κ > 0 so that Problem (AUX-UL) has the same set of globally
optimal solutions as the optimistic bilevel problem

min
(x,ȳ)∈X̃

Foκ(x, ȳ) := c>x + d>ȳ +min
y,ε

{
κε : (y, ε) ∈ S̃(x, ȳ)

}
without coupling constraints. Here, we again use X̃ = {(x, ȳ) : x ∈ X,Dȳ ≥ b− Cx} and S̃(x, ȳ) is the
set of optimal solutions of (AUX-LL).

Theorem

For any κ, the optimistic bilevel problem without coupling constraints from the last lemma and its
pessimistic version

min
(x,ȳ)∈X̃

Fpκ(x, ȳ) := c>x + d>ȳ +max
y,ε

{
κε : (y, ε) ∈ S̃(x, ȳ)

}
have the same set of feasible and globally optimal solutions.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Lemma

There is a poly-sized parameter κ > 0 so that Problem (AUX-UL) has the same set of globally
optimal solutions as the optimistic bilevel problem

min
(x,ȳ)∈X̃

Foκ(x, ȳ) := c>x + d>ȳ +min
y,ε

{
κε : (y, ε) ∈ S̃(x, ȳ)

}
without coupling constraints. Here, we again use X̃ = {(x, ȳ) : x ∈ X,Dȳ ≥ b− Cx} and S̃(x, ȳ) is the
set of optimal solutions of (AUX-LL).

Theorem

For any κ, the optimistic bilevel problem without coupling constraints from the last lemma and its
pessimistic version

min
(x,ȳ)∈X̃

Fpκ(x, ȳ) := c>x + d>ȳ +max
y,ε

{
κε : (y, ε) ∈ S̃(x, ȳ)

}
have the same set of feasible and globally optimal solutions.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Corollary

There is a poly-sized parameter κ > 0 so that the optimistic bilevel problem without coupling
constraints has the same set of globally optimal solutions as the pessimistic bilevel problem

min
(x,ȳ)∈X̃

Fpκ(x, ȳ) := c>x + d>ȳ +max
y,ε

{
κε : (y, ε) ∈ S̃(x, ȳ)

}
without coupling constraints.
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Bye bye, coupling constraints …

Pessimistic with
coupling constraints

Optimistic with
coupling constraints

Optimistic without
coupling constraints

Pessimistic without
coupling constraints

à la Zeng (2020)

“old” paperGoal
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Proof of the “à la Zeng (2020)” lemma

Let x ∈ X be given and consider a fixed i ∈ [m]. Then, the i-th coupling constraint is equivalent to
miny{Bi·y : y ∈ S(x)} ≥ ai − Ai·x, which can be reformulated as Bi·yi ≥ ai − Ai·x with
yi ∈ argminy {Bi·y : y ∈ S(x)} . Now, let ϕ denote the optimal-value function of the lower-level
problem. It follows that x satisfies the i-th coupling constraint if and only if

Bi·yi ≥ ai − Ai·x with yi ∈ argmin
y

{
Bi·y : Dy ≥ b− Cx, f>y ≤ ϕ(x)

}
. (1)

We now show that the latter is equivalent to the stated conditions in the lemma. First, let us
assume that (1) holds. Then, there exists ȳ such that ϕ(x) = f>ȳ and Dȳ ≥ b− Cx is satisfied.
Hence, the conditions of the lemma hold.

Conversely, assume that the conditions of the lemma are satisfied. The feasibility of ȳ implies

min
y

{
Bi·y : Dy ≥ b− Cx, f>y ≤ f>ȳ

}
≤ min

y

{
Bi·y : Dy ≥ b− Cx, f>y ≤ ϕ(x)

}
.

Hence, (1) is satisfied, which concludes the proof.

92



The End

There is a lot more to discover and to study!

• Bilevel optimization with discrete variables
• Bilevel optimization with nonlinear lower-level problems
• Stochastic bilevel optimization
• Robust bilevel optimization
• Bounded rationality
• etc. etc. etc.

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization
In: EURO Journal on Computational Optimization. 2021

Jointly with Thomas Kleinert, Martine Labbé, and Ivana Ljubic

A Gentle and Incomplete Introduction to Bilevel Optimization
Publicly available lectures notes

Jointly with Yasmine Beck
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BOBILib: Bilevel Optimization (Benchmark) Instance Library

• More than 2600 instances of mixed-integer linear bilevel optimization problems

• Well-curated set of test instances

• Freely available for the research community

• Testing of new methods + comparison with other ones
• Different types of instances

• Interdiction
• Mixed-integer
• Pure integer

• Benchmark sets for all of them

• Extensive numerical results

• New data + solution format

• All best known solutions available

https://bobilib.org
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