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What is bilevel optimization anyway?
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“Usual” single-level problems

min f(x)
st. g(x) >0
h(x) =0

- only one objective function f
- one vector of variables x
- one set of constraints g and h

This models a situation in which a single decision maker takes all decisions,
i.e., decides on the variables of the problem.

Very often, that's appropriate:

- a single dispatcher controls a gas transport network
- a single investment bank decides on the assets in a portfolio
- a single logistics company decides on its supply chain



Often, life’s different

- Many situations in our day-to-day life are different
- Often:
- A decision maker makes a decision ...
- ... while anticipating the (rational, i.e., optimal) reaction of another decision maker
- The decision of the other decision maker depends on the first decision
- Thus: the outcome (or in more mathematical terms, the objective function and/or feasible set)
depends on the decision/reaction of the other decision maker



Often, life’s different

- Many situations in our day-to-day life are different
- Often:

- A decision maker makes a decision ...
- ... while anticipating the (rational, i.e., optimal) reaction of another decision maker
- The decision of the other decision maker depends on the first decision

- Thus: the outcome (or in more mathematical terms, the objective function and/or feasible set)
depends on the decision/reaction of the other decision maker

Formalizing this situation leads to hierarchical or bilevel optimization problems



Informal example: Pricing

- Avery rich class of applications of bilevel optimization
- First decision maker (leader)

- decides on a price of a certain good
(or maybe on different prices for multiple goods)
- goal: maximize revenue from selling these goods



Informal example: Pricing

- Avery rich class of applications of bilevel optimization
- First decision maker (leader)

- decides on a price of a certain good
(or maybe on different prices for multiple goods)
- goal: maximize revenue from selling these goods

- Second decision maker (follower)
- decides on purchasing the goods of the leader to generate some utility

Thus, ...
- the leader’s decision depends on the optimal reaction of the follower
- the decision of the follower depends on the (pricing) decisions of the leader
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- Graph models the network of drug smuggling routes

- Smugglers want to maximize the flow of drugs from an origin to a destination



Anti Drug Smuggling

- Graph models the network of drug smuggling routes

- Smugglers want to maximize the flow of drugs from an origin to a destination

- Follower: maximum flow (= amount of drugs) problem

- Leader: Interdiction of certain parts of the drug smuggling routes
- Goal of the leader: minimize the maximum flow

- Leader only has a certain budget

- ...and maybe incomplete information about the follower’s problem



Anti Drug Smuggling

Canada and the Transcontinental Drug Links

Strategic Forecasting Inc =l Emailpage &k PrintPage B Email Us
go to original

Canadian police conducted several DRUG OUTES
simultaneous raids on suspected drug - OUGH CA
traffickers in Newfoundland and Quebec
provinces Oct. 11, arresting two dozen
people and seizing marijuana, cocaine,
weapons, cash and property. The drug-
trafficking ring, which Canadian
authorities believe was operated by the
Quebec-based Hell's Angels
motorcycle/crime gang, could have
smuggled the cocaine into Canada from
South America via Mexico and the United
States.

More than 70 members of the Royal
Newfoundland Constabulary and
Quebec's Provincial Biker Enforcement
Unit carried out the raids, which
represented the culmination of an 18-

monthl_ong investigation dubbed The jungles of South America, where cocaine is produced, seem
Operation Roadrunner: The arrests were 5 long way from the St. Lawrence River. Using a sophisticated
made near St. John's in Newfoundland shipment and distribution network, however, criminal and

and near the towns of Laval and La militant organizations can cover the distance in a few days.
Tuque in Quebec. In Newfoundland, authorities seized $300,000 in cash, 51 pounds of
marijuana and 19 pounds of cocaine, as well as vehicles, weapons and computers. In
Quebec, $170,000 and four houses were seized.

i



A bit more formal, please

Definition (Bilevel optimization problem)

A bilevel optimization problem is given by

oin F(x,y)
st. G(x,y)>0

y € 5(x)



A bit more formal, please

Definition (Bilevel optimization problem)

A bilevel optimization problem is given by

oin F(x,y)
st. G(x,y)>0
y € 5(x)

S(x): set of optimal solutions to the x-parameterized problem

min f(xy)

st g(y) 20



A bit more formal, please ... continued

join - F(xy)
st. G(x,y)>0
y € 5(x)
..and ...

S(x) = ar%gﬂ;in {f(x,y): g(x,y) > 0}

Wording

- First problem: so-called upper-level (or
the leader’s) problem

- Second problem is the so-called
lower-level (or the follower's) problem

- Both problems are parameterized by
the decisions of the other player
- x € R™: upper-level variables
- decisions of the leader
- y € R"™: lower-level variables
- decisions of the follower



A bit more formal, please ... continued

Functions and dimensions

min  F(x,y) - Objective functions
Xehy - F,f:R™ xRY - R
st. G(x,y) >0 - Constraint functions
yeS(x) c G:R™ xR — RM
- g R™ xR — R
..and ... - Thesets X C R™ and Y C R
are often used to denote
S(x) = arg ngin {(x,¥): g(x,y) > 0} integrality constraints.
ye

- Example: Y = Z"v makes the lower-level
problem an integer program



A bit more formal, please ... continued

Definition
min  F(x,y) .
XeX,y 1. We call upper-level constraints
st. G(x,y) >0 Gi(x,y) > 0,i€ {1,...,m}, coupling
y € S(x) constraints if they explicitly depend on
the lower-level variable vector y.
~and .. 2. All upper-level variables that appear in
S(x) = argmin {f(x,y): g(x,y) > 0} the lower-level constraints are called

yey linking variables.



Optimal value function

Instead of using the point-to-set mappings ...
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Instead of using the point-to-set mapping S ... one can also use the so-called optimal-value function
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Optimal value function reformulation

Instead of using the point-to-set mapping S ... one can also use the so-called optimal-value function

p(x) = ryeip {f(x,y): g(x,y) > 0}

and re-write the bilevel problem as

i, Py

st. G(x,y) >0, g(x,y) >0
flxy) < o)



Shared constraint set, bilevel feasible set, inducible region

Definition

The set
Q:={(x,y) eXxY:G(x,y) >0, g(x,y) >0}

is called the shared constraint set.
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Shared constraint set, bilevel feasible set, inducible region

Definition

The set
Q:={(x,y) eXxY:G(x,y) >0, g(x,y) >0}

is called the shared constraint set.

Its projection onto the x-space is denoted by

Q := {x: Iy with (x,y) € Q}.

Definition

The set
Fi={(xy): (x,¥) €Q, y€S(x)}

is called the bilevel feasible set or inducible region.



Single-level relaxation

Definition

The problem of minimizing the upper-level objective function over the shared constraint set, i.e,
min - F(x,y)
st (x,y) € Q,

is called the single-level relaxation (SLR) of the bilevel problem.



Single-level relaxation

Definition

The problem of minimizing the upper-level objective function over the shared constraint set, i.e,
min - F(x,y)
st (x,y) € Q,

is called the single-level relaxation (SLR) of the bilevel problem.

Remark

- The single-level relaxation is identical to the original bilevel problem except for the
constrainty € S(x), i.e,, except for the lower-level optimality.

- Thus, itis indeed a relaxation.



Pricing revisited

- First bilevel pricing problem with linear constraints, linear upper-level objective, and bilinear
lower-level objective: Bialas and Karwan (1984)
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- First bilevel pricing problem with linear constraints, linear upper-level objective, and bilinear
lower-level objective: Bialas and Karwan (1984)

- Here: a more general version taken from Labbé et al. (1998)

max X'y
Xy=(y1,¥2)
st. Ax<a

y e arg_min {(X —+ d1)T)_/1 + C];)_/zi D1)_/1 —+ Dz)_/z > b}
y
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Pricing revisited

max X'y
xy=(y1,¥2)
st. Ax<a

y e arg_min {(X+ d1)T)_/1 + C/;r)_/zi D1)_/1 =+ Dz)_/z > b}
y

- Vector y of lower-level variables is partitioned into two sub-vectors y; and y,, called plans,
that specify the levels of some activities such as purchasing goods or services

- Upper-level player influences the activities of plan y; through the price vector x that is
additionally imposed onto y;

- Goal of the leader is to maximize her revenue given by x "y,

- Price vector x is subject to linear constraints that may, among others, impose lower and upper
bounds on the prices



Pricing revisited

max X'y
xy=(y1,¥2)
st. Ax<a
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- The vectors dy and d; represent linear disutilities faced by the lower-level player
when executing the activity plans y; as well as y,
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- The vectors dy and d; represent linear disutilities faced by the lower-level player
when executing the activity plans y; as well as y,
- d, may also encompass the price for executing the activities not influenced by the leader
- These activities may, e.g., be substitutes offered by competitors for which prices are known and fixed
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max X'y
X,y=(y1,¥2)

st. Ax<a

y e arg_min {(X+ d1)T)_/1 + d;r)_/zi D1)_/1 —+ Dz)_/z > b}
y

- The vectors dy and d; represent linear disutilities faced by the lower-level player
when executing the activity plans y; as well as y,
- d, may also encompass the price for executing the activities not influenced by the leader
- These activities may, e.g., be substitutes offered by competitors for which prices are known and fixed
- The lower-level player determines his activity plans y; and y» to minimize the sum of total
disutility and the price paid for plan y; subject to linear constraints



Pricing revisited

max X'y
xy=(y1,¥2)
st. Ax<a

y e arg_min {(X —+ d1)T)_/1 + d;r)_/zi D1)_/1 —+ Dz)_/z > b}
y

- The vectors dy and d; represent linear disutilities faced by the lower-level player
when executing the activity plans y; as well as y,
- d, may also encompass the price for executing the activities not influenced by the leader
- These activities may, e.g., be substitutes offered by competitors for which prices are known and fixed

- The lower-level player determines his activity plans y; and y» to minimize the sum of total
disutility and the price paid for plan y; subject to linear constraints

- To avoid the situation in which the leader would maximize her profit by setting prices to infinity
for these activities y; that are essential, one may assume that the set {y,: Dyy» > b} is
non-empty



Anti Drug Smuggling Revisited

Follower: w-parameterized maximum flow problem

e(w) := max Z fa — Z fa

ferll aesou(s) aesin(s)
st Z fa— Z fa=0,
aesout(v) aesn(v)

fa<ca(T—wq), a€A
f0207 GEA

veV\{s,t}



Anti Drug Smuggling Revisited

Follower: w-parameterized maximum flow problem

e(w) := max Z fa — Z fa

FERML ooy acans)
st > fa— > fa=0,
aesout(v) acsin(v)
fa<ca(T—wq), a€A
fa>0, aecA

Leader: Maximum flow interdiction

min o(w)
we{0,1}1Al

st. Zwa <B

acA

veV\{s,t}



An Academic and Linear Example (Kleinert 2021)

Upper-level problem
min
X,y
st

Lower-level problem
min
y

st

F(x,y) = x + 6y
—X+5/ <125
x>0

y € 5(x)

f(Xay):_y
2X—y >0
—X—y>—6
— X406y > -3
X+3y >3

20



An Academic and Linear Example (Kleinert 2021)

- Shared constrained set: gray area

- Green and red lines: nonconvex set of

optimal follower solutions
(lifted to the x-y-space)

- Green lines: Nonconvex and

disconnected bilevel feasible set of the
bilevel problem

21



An Academic and Linear Example (Kleinert 2021)

. The feasible region of the follower

problem corresponds to the gray area.

. The follower’s problem—and therefore

the bilevel problem—is infeasible for
certain decisions of the leader, e.g,,
x = 0.

. Theset {(x,y): x € Q,y € S(X)}

denotes the optimal follower solutions
lifted to the x-y-space, and is given by
the green and red facets.

. This set is nonconvex!

22



An Academic and Linear Example (Kleinert 2021)

. The single leader constraint (dashed

line) renders certain optimal responses
of the follower infeasible.

. The bilevel feasible region F

corresponds to the green facets.

. Thus, the feasible set is not only

nonconvex but also disconnected.

. The optimal solution is (3/7,6/7) with

objective function value 39/7.

. In contrast, ignoring the follower's

objective, i.e, solving the single-level
relaxation, yields the optimal

solution (3, 0) with objective function
value 3. Note that the latter point is not
bilevel feasible.

23



Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

min X
X,YER

st. y>05x+1, x>0

leader
<

|

follower

yeargmin{y:y>2x—-2,y>0.5}
yER

Optimal solution: (2,2)

24



Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

- Strengthening y > 0.5 in the lower-level
problem using y > 0.5x + 1 of the
upper-level problem

- This yields the minimum value of
0.5x+1Tis1duetox >0

- New bound of yisy > 1

- Single-level relaxation stays the same

min  x
X,yeR

st. y>05x+1, x>0,

yeargmin{y: )722)(727 )721}7
JER

Optimal solution: (0,1) # (2,2)

leader

l

follower

follower

3 25



A Brief History of Complexity Results

- Jeroslow (1985): hardness of general multilevel models

- Corollary: NP-hardness of the LP-LP bilevel problem
- Hansen et al. (1992): LP-LP bilevel problems are strongly NP-hard
- reduction from KERNEL

- Vicente et al. (1994): even checking whether a given point is a local minimum of a bilevel
problem is NP-hard

26



Some theory of linear bilevel problems



The linear bilevel problem

We now consider LP-LP bilevel problems of the form

min ¢/ x+¢y
Xy
st. Ax > aq,

y € argmin {dTy: Cx 4 Dy > b}
y

with ¢y € R™, ¢,,d € R, A € R™"™ and a € R™ as well as C € R*™, D € R**™, and b € R".

27



The linear bilevel problem

We now consider LP-LP bilevel problems of the form

min ¢ x+¢'y
Xy
st. Ax > aq,

y € argmin {dTy: Cx 4 Dy > b}
y

with ¢y € R™, ¢,,d € R, A € R™"™ and a € R™ as well as C € R*™, D € R**™, and b € R".

Remark

This problem does not contain coupling constraints to avoid the further difficulties that arise due
to disconnected bilevel feasible sets.

27



The first structural result

- Our goal now is to understand the geometric properties of LP-LP bilevel problems.

- The main source of the remainder of this section is the book by Bard (1998).

28



The first structural result

- Our goal now is to understand the geometric properties of LP-LP bilevel problems.

- The main source of the remainder of this section is the book by Bard (1998).

Theorem

Suppose that the shared constraint set is non-empty and bounded. The bilevel-feasible set can
then be equivalently written as the intersection of the shared constraint set with the feasible points
of a piecewise linear equality constraint. In particular, the bilevel-feasible set is a union of faces of
the shared constraint set.

28



The Academic Example Revisited

29



The first structural result: proof

We start by first re-writing the bilevel-feasible set

Fi={(xY): (x,¥) € Q, y€SKx)}
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The first structural result: proof

We start by first re-writing the bilevel-feasible set
Fi={(y): (x,y) €Q, y € S(x)}
explicitly as
F = {(x,y): (x,y)eQ, d'y= myin{dT)‘/: Cx+ Dy > b}}
and use the optimal-value function

o(x) = mym {dTy: Dy >b— CX}

again.
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The first structural result: proof

We start by first re-writing the bilevel-feasible set
Fi={(y): (x,y) €Q, y € S(x)}
explicitly as
F = {(x,y): (x,y)eQ, d'y= myin{dT)‘/: Cx+ Dy > b}}
and use the optimal-value function

o(x) = mym {dTy: Dy >b— CX}

again.

By using the strong-duality theorem, we can also express the optimal-value function by means of
the dual LP as
o(x) = mAax{(b —x)"A:DTA=d, x> o},

30



The first structural result: proof

From the classic theory of linear optimization we know that the optimal solution is attained in one
of the vertices of the feasible set,
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From the classic theory of linear optimization we know that the optimal solution is attained in one
of the vertices of the feasible set, which, for the dual LP, does not depend on the leader’s decision x
anymore.

Let A',..., X\° be the set of all the dual polyhedron’s vertices, i.e,, the set of vertices of the
polyhedron defined by
D'A=d, A>0.

Thus, we can further equivalently re-write the optimal-value function as

o(x) = max{(b —x) AN e {x,...x}}.

31



The first structural result: proof

From the classic theory of linear optimization we know that the optimal solution is attained in one
of the vertices of the feasible set, which, for the dual LP, does not depend on the leader’s decision x
anymore.

Let A',..., X\° be the set of all the dual polyhedron’s vertices, i.e,, the set of vertices of the
polyhedron defined by
D'A=d, A>0.

Thus, we can further equivalently re-write the optimal-value function as
() =max{(b—0)TA: A e (N, N}
This shows that ¢(x) is a piecewise linear function and re-writing the bilevel-feasible set as
F={xy) €:dTy - p(x) =0}

shows the claim that the bilevel-feasible set can be written as the intersection of the shared
constraint set with a piecewise linear equality constraint.

31



The first structural result: proof

Consider now again the definition of the optimal-value function using the vertices
of the dual polyhedron of the lower-level problem.
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The first structural result: proof
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Suppose that for a given x the corresponding solution is the vertex A.
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Consider now again the definition of the optimal-value function using the vertices
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The first structural result: proof

Consider now again the definition of the optimal-value function using the vertices
of the dual polyhedron of the lower-level problem.

Suppose that for a given x the corresponding solution is the vertex A.

By using dual feasibility, we obtain

0=dTy— () = (0TA) Ty — (W) T (b — 0 = (\") T (Cx + Dy — b).

Thus, for those Af, i € {1,...,£}, with \* > 0 we get (Cx + Dy — b); = 0.
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The first structural result: proof

Consider now again the definition of the optimal-value function using the vertices
of the dual polyhedron of the lower-level problem.

Suppose that for a given x the corresponding solution is the vertex A.

By using dual feasibility, we obtain

0=dTy— () = (0TA) Ty — (W) T (b — 0 = (\") T (Cx + Dy — b).

Thus, for those Af, i € {1,...,£}, with \* > 0 we get (Cx + Dy — b); = 0.

Hence, the bilevel-feasible set is a union of faces of the shared constraint set.

32



In other words ...

Corollary

Suppose that the assumptions of the last theorem hold. Then, the LP-LP bilevel problem is
equivalent to minimizing the upper-level’s objective function over the intersection of the shared
constraint set with a piecewise linear equality constraint.
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In other words ...

Corollary

Suppose that the assumptions of the last theorem hold. Then, the LP-LP bilevel problem is
equivalent to minimizing the upper-level’s objective function over the intersection of the shared
constraint set with a piecewise linear equality constraint.

Corollary

Suppose that the assumptions of the last theorem hold. Then, a solution of the LP-LP bilevel
problem is always attained at a vertex of the bilevel-feasible set.

33



Solutions appear at vertices of the HPR

Theorem

Suppose that the assumptions of the last theorem hold. Then, a solution (x*,y*) of the LP-LP
bilevel problem is always attained at a vertex of the shared constraint set Q.

34



Solutions appear at vertices of the HPR: proof

Let (x",y"),...,(x",y") be the distinct vertices of the shared constraint set Q.
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Solutions appear at vertices of the HPR: proof

Let (x",y"),...,(x",y") be the distinct vertices of the shared constraint set Q.
Since Q is a convex polyhedron, any point in Q can be written as a convex combination of these

vertices, i.e.,
.
Oy =il y)
i=1
with
r
ZO":1 and o >0 foralli=1,...,r.

=1
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Solutions appear at vertices of the HPR: proof

Let (x",y"),...,(x",y") be the distinct vertices of the shared constraint set Q.

Since Q is a convex polyhedron, any point in Q can be written as a convex combination of these

vertices, i.e.,
.

Xy =D aix.y)
i=1

with

r

ZO":1 and o >0 foralli=1,...,r.

=1
From the proof of the last theorem it follows that the optimal-value function ¢ is convex and
continuous.

35



Solutions appear at vertices of the HPR: proof

Since the bilevel solution (x*,y™) is, of course, bilevel feasible, we obtain

0= dTy* _ QD(X*)

r r
e
= =
> i ad’y — ia,-g;(x")
i=1 i=1

_ i a; (dTyi - Ap(X/)) .
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Solutions appear at vertices of the HPR: proof

Since the bilevel solution (x*,y™) is, of course, bilevel feasible, we obtain

0=d"y" —o(x*)
r r
) (5
i=1 i=1
> i ad’ e ioz,-go(x'.)
i=1 i=1
r
-3 (dTy’ - Ap(X/)) .
i=1

By the definition of the optimal-value function we also have
o(x") = min {dTy: X'+ Dy > b} <d"y.
y

This implies d"y' — ¢(x') > 0.

36



Solutions appear at vertices of the HPR: proof

Consequently, for all i € {1,...,r} with a; > 0 it holds d"y' = ¢(x') since we otherwise get a
contradiction on the last slide.
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Consequently, for all i € {1,...,r} with a; > 0 it holds d"y' = ¢(x') since we otherwise get a
contradiction on the last slide.

Hence, for those i with o; > 0 we obtain (x',y') € F.
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Solutions appear at vertices of the HPR: proof

Consequently, for all i € {1,...,r} with a; > 0 it holds d"y' = ¢(x') since we otherwise get a
contradiction on the last slide.

Hence, for those i with o; > 0 we obtain (x',y') € F.

From the last corollary we know that (x*,y*) is a vertex of the bilevel-feasible set. Suppose now
that there are two indices i and j with a; > 0 and o > 0.

Thus, (x’,y') € F and (Xj,yf) € F holds and we can write (x*,y*) as a proper convex combination of
two bilevel feasible points, which is a contradiction to the last corollary.
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Solutions appear at vertices of the HPR: proof

Consequently, for all i € {1,...,r} with a; > 0 it holds d"y' = ¢(x') since we otherwise get a
contradiction on the last slide.

Hence, for those i with o; > 0 we obtain (x',y') € F.

From the last corollary we know that (x*,y*) is a vertex of the bilevel-feasible set. Suppose now
that there are two indices i and j with a; > 0 and o > 0.

Thus, (x’,y') € F and (Xj,yf) € F holds and we can write (x*,y*) as a proper convex combination of
two bilevel feasible points, which is a contradiction to the last corollary.

Thus, (x*,y™) is a vertex of the shared constraint set.
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How do you solve a linear bilevel
problem?




Using optimality conditions

Most classic approach to obtain a single-level reformulation:

Exploit optimality conditions for the lower-level problem
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Using optimality conditions

Most classic approach to obtain a single-level reformulation:

Exploit optimality conditions for the lower-level problem

- These optimality conditions need to be necessary and sufficient

- This is usually only possible for convex lower-level problems
that satisfy a reasonable constraint qualification
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An LP-LP Bilevel Problem

- Let's keep it simple: KKT reformulation of an LP-LP bilevel

- Consider

min ¢/ x+¢y
Xy

st. Ax+ By > aq,
y € argmin {dT)’/: Cx + Dy > b}
y

- Data: ¢y € R™, ¢y, d € R, A € R™™ B € R™" and a € R™ as well as C € R**™, D € R**™,
and b € R*
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KKT reformulation of LP-LP bilevel problems

min ¢ X+¢y
X,y
st. AX+By>a
y € argmin {dTy: Cx 4+ Dy > b}
y
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KKT reformulation of LP-LP bilevel problems

min ¢ X+¢y
X,y
st. AX+By>a
y € argmin {dTy: Cx 4+ Dy > b}
y

Lower-level problem can be seen as the x-parameterized linear problem

min d'y st Dy >b—Cx
y
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KKT reformulation of LP-LP bilevel problems

min ¢ X+¢y
X,y
st. AX+By>a
y € argmin {dTy: Cx 4+ Dy > b}
y

Lower-level problem can be seen as the x-parameterized linear problem

min d'y st Dy >b—Cx
y

Its Lagrangian function is given by

L(y,\)=d"y —AT(Cx+ Dy — b)
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KKT reformulation of LP-LP bilevel problems

The KKT conditions of the lower level are given by ...

- dual feasibility
D'A=d, A>0

- primal feasibility
Cx+Dy>b

- and the KKT complementarity conditions

Ai(CGi.x+Diy —b))=0 foralli=1,...
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KKT reformulation of LP-LP bilevel problems

min ¢ x+¢'y

st. Ax+By>a, Cx+Dy>b
D'A=d, A>0

)\,‘(C;.X + Dy — b,) =0 foralli= 1,...
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KKT reformulation of LP-LP bilevel problems

min ¢ x+¢'y
X,Y5A

st. Ax+By>a, Cx+Dy>b
D'A=d, A>0
)\;(C,‘.X-i-D,‘.y—b,'):O foralli:1,...,é

- We now optimize over an extended space of variables including the lower-level dual variables A

- Since we optimize over x, y, and A simultaneously, any global solution of the problem above
corresponds to an optimistic bilevel solution

-+ The KKT reformulation is linear except for the KKT complementarity conditions

- Thus, the problem is a nonconvex NLP
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KKT reformulation of LP-LP bilevel problems

min G x+¢'y
XA

st. AX+By>a, Cx+Dy>b
D'Ax=d, A>0

A(CGx+ Dy —b))=0 foralli=1,...

- Thus, the problem is a nonconvex NLP
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KKT reformulation of LP-LP bilevel problems

min G x+¢'y
XA

st. AX+By>a, Cx+Dy>b
D'Ax=d, A>0
A(CGx+ Dy —b))y=0 foralli=1,...,¢

- Thus, the problem is a nonconvex NLP

It is even worse! It's a mathematical program with complementarity constraints (an MPCC).
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KKT reformulation of LP-LP bilevel problems

: T T
L“nyy[g GX+Cy
st. Ax+By>a, Cx+Dy>b
D'Ax=d, A>0

A(CGx+ Dy —b))y=0 foralli=1,...,¢

- Thus, the problem is a nonconvex NLP
It is even worse! It's a mathematical program with complementarity constraints (an MPCC).

Bad news (Ye and Zhu 1995)

Standard NLP algorithms usually cannot be applied for such problems since classic constraint
qualifications like the Mangasarian-Fromowitz or the linear independence constraint qualification
are violated at every feasible point.
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How to solve the KKT reformulation?

Remember

The “only” reason for the nonconvexity of the KKT reformulation are the bilinear products of the
lower-level dual variables \; and the upper-level primal variables x in the term

)\,‘C,‘.X
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How to solve the KKT reformulation?

Remember

The “only” reason for the nonconvexity of the KKT reformulation are the bilinear products of the
lower-level dual variables \; and the upper-level primal variables x in the term

)\,‘C,‘.X

and the bilinear products of the lower-level dual variables A; and the lower-level primal variables y
in the term
A,‘D,‘.y.
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How to solve the KKT reformulation?

Key idea: Linearize these terms by exploiting the combinatorial structure of the KKT
complementarity conditions.
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How to solve the KKT reformulation?
Key idea: Linearize these terms by exploiting the combinatorial structure of the KKT
complementarity conditions.
The complementarity conditions
MN(CGx+Diy—b)=0, i=1,...,¢
can be seen as disjunctions stating that either
Ai=0 or C.x+D.y=hb,

needs to hold.



How to solve the KKT reformulation?
Key idea: Linearize these terms by exploiting the combinatorial structure of the KKT
complementarity conditions.
The complementarity conditions
MN(CGx+Diy—b)=0, i=1,...,¢
can be seen as disjunctions stating that either
Ai=0 or C.x+D.y=hb,
needs to hold.
These two cases can be modeled using binary variables
zie{0,1}, i=1,...,¢

in the following mixed-integer linear way:

A <Mz, Cix+Diy—b <M —2z).
Here, M is a sufficiently large constant.
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How to solve the KKT reformulation?

By construction, we get the following result.

Theorem

Suppose that M is a sufficiently large constant. Then, the KKT reformulation is equivalent to the
mixed-integer linear optimization problem

mn o x+¢y

st. Ax+By>a, Cx+Dy>b,
D'A=d, A>0,
A <Mz foralli=1,...,¢,
Cix+Diy — by <M —2z) foralli=1,...,¢,
zi€{0,1} foralli="1,...,¢.
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Technical Note—There’s No Free Lunch: On the
Hardness of Choosing a Correct Big-M in Bilevel
Optimization
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Abstract

One of the most frequently used approaches to solve linear bilevel optimization problems consists in
replacing the lower-level problem with its Karush-Kuhn-Tucker (KKT) conditions and by
reformulating the KKT ity iti using i from mixed-integer linear
optimization. The latter step requires to determine some big-M constant in order to bound the lower
level’s dual feasible set such that no bilevel-optimal solution is cut off. In practice, heuristics are
often used to find a big-M although it is known that these approaches may fail. In this paper, we
consider the hardness of two proxies for the above mentioned concept of a bilevel-correct big-M.
First, we prove that verifying that a given big-M does not cut off any feasible vertex of the lower
level’s dual polyhedron cannot be done in polynomial time unless P = NP. Second, we show that
verifying that a given big-M does not cut off any optimal point of the lower level’s dual problem (for
any point in the projection of the high-point relaxation onto the leader’s decision space) is as hard as
solving the original bilevel problem.
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Connections between robust and
bilevel optimization




Dagstuhl Seminar “Optimization at the Second Level”: Survey Results

Question:

“What are the best and the worst aspects of this seminar?”
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Dagstuhl Seminar “Optimization at the Second Level”: Survey Results

Question:

“What are the best and the worst aspects of this seminar?”

Answer (by one of the participants):

“Best: Very active audience with a lot of questions.
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Dagstuhl Seminar “Optimization at the Second Level”: Survey Results

Question:

“What are the best and the worst aspects of this seminar?”

Answer (by one of the participants):
“Best: Very active audience with a lot of questions.

Worst: Found out that robust optimization is just a special case of bilevel optimization”

48



Later on Twitter

. Jannis Kurtz
@Jannisk13
| asked #chatgpt if #robustoptimization is a special case of

#bileveloptimization .
Tweet libersetzen

n Is robust optimization a special case of bilevel optimization?

No, robust optimization is not a special case of bilevel optimization. Robust optimization
and bilevel optimization are two distinct types of optimization techniques that are used to
solve different types of problems.

Robust optimization is a method of optimization that seeks to find solutions that are not
overly sensitive to changes in the inputs or assumptions of the problem. This is achieved by
introducing a certain degree of flexibility or “robustness” into the optimization process,

allowing the solution to remain optimal even under a range of different conditions.

Bilevel optimization, on the other hand, is a type of optimization problem that involves two

o

H Q@
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Later on Twitter

Ryan Cory-Wright @RyanCoryWright - 9. Dez. 2022

T

lization a special case of robust optimization | N N
n a special case of bilevel optimization

1is a special case of robust optimization because it inv

levels. In bilevel optimization, the upper level represer ¢pacia| case of bilevel optimization because
i level represents the system being controlled or optin
he upper level makes decisions that affect the lower le
‘e function at the upper level. This creates a feedback \"y modeled using a set of posstbls scenario

timal for the worst-case scenario. In bilevel (

tive function that is subject to uncertainty. It

: jecti 1
‘dback loop, bilevel optimization problems are inherent [t Uppaciavesiwhen tha objectiva func

stimization problems. They require special techniques *NStraints on the optimization problem are d
thy they are considered a special case of robust optimi upper level is the optimization of the object

sal is to find a solution that is not sensitive to small chz a¢i0n of the constraints, which are defined (
problem, and bilevel optimization problems are partic/

‘egard because of the feedback loop between the two

Q 3 T ¥ 5 il &
Jannis Kurtz @JanniskK13 - 9. Dez. 2022
Haha ok i think we solved P=NP now

@) u [ ] it &
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Later on Twitter

a

why is bilevel optimization a special case of robust optimization

Bilevel optimization is a special case of robust optimization because it involves optimizing
a problem with two levels. In bilevel optimization, the upper level represents the decision
maker and the lower level represents the system being controlled or optimized. The
decision maker at the upper level makes decisions that affect the lower level, which in turn
affects the objective function at the upper level. This creates a feedback loop between the

two levels.

Because of this feedback loop, bilevel optimization problems are inherently more complex
than single-level optimization problems. They require special techniques and algorithms
to solve, which is why they are considered a special case of robust optimization. In robust
optimization, the goal is to find a solution that is not sensitive to small changes or
uncertainties in the problem, and bilevel optimization problems are particularly

challenging in this regard because of the feedback loop between the two levels.

i}
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Later on Twitter

why is robust optimization a special case of bilevel optimization

Robust optimization is a special case of bilevel optimization because it involves the
optimization of an objective function that is subject to uncertainty. In robust optimization,
the uncertainty is typically modeled using a set of possible scenarios, and the goal is to
find a solution that is optimal for the worst-case scenario. In bilevel optimization, there are
two levels of optimization: the upper level, where the objective function is defined, and the
lower level, where the constraints on the optimization problem are defined. In the case of
robust optimization, the upper level is the optimization of the objective function, and the
lower level is the optimization of the constraints, which are defined using the set of

possible scenarios.

X

1]
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We wanted to find out!

Marc Goerigk

Jannis Kurtz

Johannes Thurauf
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Optimistic Bilevel Optimization (Dempe 2002)

min - F(x,y)

st. G(x,y) <0
y € 5(x)

S(x): set of solutions to the x-parameterized problem
min - f(x,y)
y

st g(xy) <0
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Pessimistic Bilevel Optimization (Wiesemann et al. 2013)

min  max F(x,
in max F(x.y)
st. G(x,y') <0 Wy €5S(x)
S(x): set of solutions to the x-parameterized problem
min f(x,y)
y

st. g(x,y) <0
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Robust Optimization

mxin H(x)

st h,‘(X,U,‘) <0 Vi € [, Yu; € U;
h(x)<0 VjeJ

Important Case

Decision-dependent uncertainty: U; = U;(x)

Standard Assumptions
- For every robust feasible point x and every i € |, the constraint functions h;(x, -) are continuous

- For i € I, the uncertainty set Uj(x) is non-empty and compact
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Main Research Question

If P is an instance of problem class P
and if Ais an algorithm for solving instances of problem class Q,

can then A also be used to solve P?
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Main Research Question

If P is an instance of problem class P
and if Ais an algorithm for solving instances of problem class Q,

can then A also be used to solve P?

One can use an algorithm A
for solving optimistic bilevel optimization problems Q

for solving a strictly robust optimization problem P.
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Bilevel Methods can Solve Decision-Dependent Robust Problems

Theorem

Let the standard assumptions be satisfied. Let further (x*,u*) be a solution to the optimistic bilevel
problem

min  H(x)

X,U

st. hi(x,u;)) <0 Viel,
hi(x) <0 Vjel,
u e s(x)

where S(x) is the set of solutions to the x-parameterized lower-level problem

max hi(x,u;)) st u;eUi(x)Viel
u:(ul)le! /EE/: /( l) : /( )

Then, x* is a solution to the strictly robust optimization problem with decision-dependent
uncertainty sets U;(x), i € I.
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Some Remarks

- Both “standard” as well as decision-dependent uncertainty sets can be tackled

- Uncertain constraints with concave dependence on u and non-empty interior of the
uncertainty sets lead to convex lower levels satisfying Slater's CQ
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Some Remarks

- Both “standard” as well as decision-dependent uncertainty sets can be tackled

- Uncertain constraints with concave dependence on u and non-empty interior of the
uncertainty sets lead to convex lower levels satisfying Slater's CQ

- The bilevel problem from the theorem is an optimistic one.
Using a pessimistic one, the lower level can even have a constant objective function

min max  H(x)
X ueS(x)

st h,‘(X7 Uj) <0 Viel, Vu= (u;),-el c S(X)
hi(x) <0 Vvje)

S(x): set of solutions to the x-parameterized lower-level problem

min 42 st ureU(x) Viel

u=(u)ig;
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And the other way around?

Theorem

Let (x*,y™) be a solution to the strictly robust problem

min- F(x,)

st f(6y) <f(g) Vi€ U(),
G(x,y) <0,
g(x,y) <0,

where the decision-dependent uncertainty set is given by

U(x) == {7 e R™: g(x,7) < 0}.

Then, (x*,y™) is a solution to the optimistic bilevel problem.
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First Main Result

Optimistic bilevel optimization
and
strictly robust optimization with decision-dependent uncertainty sets

are equivalent!
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First Main Result

Optimistic bilevel optimization
and
strictly robust optimization with decision-dependent uncertainty sets

are equivalent!

PS: Both are equivalent to generalized semi-infinite optimization.
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What about pessimistic bilevel problems?

Theorem
A solution to the pessimistic bilevel problem can be computed by solving the following strictly
robust problem with decision-dependent uncertainty set
min F(x,y)
st F(xy) > F(xy") W € U(x)
Gx,y') <0 Wy eUx)
FOGy) <fixy) W e U(x)
G(x,y) <0
g(x,y) <0
with uncertainty set
U(x) = {y: f(x,¥) < x(x), 9(x,¥) < 0}.

Here, x(x) is the optimal-value function of the x-parameterized lower-level problem.
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Two-Stage Robust Optimization

- Uncertainty is still handled in a strict way
- Decisions are split

- here-and-now
- wait-and-see

- Ben-Tal, Goryashko, Guslitzer, Nemirovski (2004), Bertsimas, Den Hertog (2022)

min max min H(x,y)
xeX uel yev(x,u)

with

Y(x,u)={y e R": h(x,y,u) <0}
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Robust Bilevel Problems

Important difference:

1. Wait-and-see follower

2. Here-and-now follower

Robust bilevel problem with wait-and-see follower

min max mln {F(x,y): y € S(x,u)}

xeX uel(x)

S(x, u): set of solutions to the (x, u)-parameterized problem

min - f(x,y) st g(xy,u)<0
y
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Robust Bilevel vs. Two-Stage-Robust Problems

Theorem

Let x* be a solution to the optimistic robust bilevel problem with wait-and-see follower

i in{H :
min max min {H(x.y):y € S(x, u)}

where X C R™, U(x) C R"™, and S(x, u) is the set of solutions to the (x, u)-parameterized lower-level
problem

min  H(x,y) st h(x,y,u) <O0.
y

Then, x* is a solution to the two-stage robust problem with decision-dependent uncertainty set U(x).
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Robust Bilevel vs. Two-Stage-Robust Problems

Theorem

Let x* be a solution to the optimistic robust bilevel problem with wait-and-see follower

i in{H :
min max min {H(x.y):y € S(x, u)}

where X C R™, U(x) C R"™, and S(x, u) is the set of solutions to the (x, u)-parameterized lower-level
problem

min  H(x,y) st h(x,y,u) <O0.
y

Then, x* is a solution to the two-stage robust problem with decision-dependent uncertainty set U(x).

The other direction again requires using optimal-value functions.

65



Min-Max-Regret Optimization

min
X

st

max { H(x, u) — min  H(y,u
ueu{ (x,u) {y: h(y,u)<0} v, u)

h(x,u)<0 YueU

}
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Min-Max-Regret Optimization

i X< H(x,u) — min  H(y,u
mn Teau{ () {v: h(y,u)<0} % )}

st. h(x,u)<0 VYueU

Theorem

Let (x*,y*) be a solution to the pessimistic bilevel problem

min{ max H(x,yofH(yz,yo:h(x,yngow':(y4,y§)es<x)}

X (V1,¥2)€S(x)
with y = (y1,y2) and S(x) = argminy{42 : y; € U, h(y,,y1) < 0}.

Then, x* is a solution to the regret problem.
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Min-Max-Regret Optimization

Min-max regret criterion is most commonly defined with uncertainty only in the objective
- Aissi et al. (2009), Kasperski and Zielinski (2016), Kouvelis and Yu (2013)

Theorem

Let (x*,y™) be a solution to the optimistic bilevel problem

min {H(x,y1) — H(y2,1): h(x) < 0}
X,YES(X)

with y = (y1,y2) and S(x) = argmin, {H(y2,y1) — H(x,y1) : y» € U, h(y2) < 0}.

Then, x* is a solution to the regret problem without uncertainty in the constraints.
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That's what we know now

Strictly Robust
Optimization

. | Optimistic Bilevel
| Optimization

Decision-Dependent
Strictly Robust
Optimization

Regret Pessimistic Bilevel

Optimization Optimization
Two-Stage
_[Robust Bilevel Optimization
Robust
"1 (wait-and-see follower)

Optimization
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The burial of coupling constraints in
linear bilevel optimization




The Team

Henri Lefebvre

Dorothee Henke

ox=(2 =dz

of2
X=00 == x(OH=y

[ »o)xx-(nt;l

Johannes Thurauf
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Do we “Really” Increase Modeling Capabilities by Using Coupling Constraints?

Spoiler: No!
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Do we “Really” Increase Modeling Capabilities by Using Coupling Constraints?

Spoiler: No!

Why not?

For every given linear bilevel optimization problem with coupling constraints, we derive ...

- a linear bilevel problem without coupling constraints

- that has the same set of optimal solutions
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The Details

Home > Optimization Letters > Article

On coupling constraints in linear bilevel
optimization
Short Communication | Open access | Published: 03 December 2024

(2024) Citethisarticle

Download PDF @ You have full access to this open access article

Dorothee Henke, Henri Lefebvre, Martin Schmidt £ & Thirauf

Q 387 Accesses Explore all metrics >
Abstract

1t is well-known that coupling constraints in linear bilevel optimization can lead to
disconnected feasible sets, which is not possible without coupling constraints. However,
there is no difference between linear bilevel problems with and without coupling
constraints w.r.t. their complexity-theoretical hardness. In this note, we prove that,
although there is a clear difference between these two classes of problems in terms of their
feasible sets, the classes are equivalent on the level of optimal solutions. To this end, given

Optimization Letters

Aims and scope >
Submit manuscript >

Use our pre-submission checklist >

Avoid common mistakes on your
manuscript.
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Re-Writing the Problem

Upper level
min ¢'x+d'y
X,y,e
st. xeX
e=20
(v,e) € 5(x)
Lower level
min fy
v,e

st Ax4+By+cee>a
Cx+Dy>b
e>0
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Re-Writing the Problem

Upper level
min ¢'x+d'y
X,y,e
st. xeX
e=0
(v,e) € 5(x)
Lower level
min fy
v,e
st. AX+By+ee>a
Cx+Dy>b

e>0

Lemma

For every bilevel feasible point (x,y) of the
original bilevel problem, the point (x,y,0) is
bilevel feasible for Problem (R) with the same
objective value. For every bilevel feasible
point (x,y, ) of Problem (R), the point (x,y) is
bilevel feasible for the original bilevel problem
with the same objective value.
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Re-Writing the Problem & Penalize

Theorem

There is a finite and poly-sized parameter k > 0 (in the bit-encoding length of the problem’s data)
so that the bilevel problem (without coupling constraints)

min c'x+d"y+ ke
e } (P)
st. xeX, (y,e) € S(x)

has the same set of optimal solutions as Problem (R).
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Re-Writing the Problem & Penalize

Theorem

There is a finite and poly-sized parameter k > 0 (in the bit-encoding length of the problem’s data)
so that the bilevel problem (without coupling constraints)

min c'x+d"y+ ke
e } (P)
st. xeX, (y,e) € S(x)

has the same set of optimal solutions as Problem (R).
That's surprising!

- Reason #1

- Feasible region of the original problem is nonconvex and disconnected
- Ye and Zhu (1995): no constraint qualification is satisfied
- Exact penalization usually fails!

- Reason #2

- Exact penalty functions are usually nonsmooth (a la ¢1)
- Our penalty function is perfectly smooth (even linear)
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Proof Idea

1. We derive a single-level reformulation of the bilevel problem (R),
using the KKT conditions of the follower’s problem.

2. We apply results from augmented Lagrangian duality theory for mixed-integer linear problems
to show that a poly-sized exact penalization parameter exists.

3. We show that the resulting mixed-integer linear program is nothing
but the KKT reformulation of Problem (P).
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Proof

- Lower-level problem of Problem (R) is an LP
- Dempe and Dutta (2012): Replace it with its KKT conditions

min c'x+d'y
XVse
st. xeX,e=0
AX+By+ee>a, Cx+Dy>b, >0
B'A+D u=f e A+n=0
A psm 20,
AN (AX+By+ee—a)=0, ' (Cx+Dy—b)=0,7e=0
- Additional binary variables z*,z#, 2"
- Sufficiently large big-M

AS(1=2M, p<(1=2M, n<(1-2")M
AX+By+ee—a<z*M, Cx+Dy—b<z'M, £<z'M
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Wait! Are we Cheating?

- Pineda and Morales (2019): Heuristics for computing big-M values usually fail

- Kleinert et al. (2020): Validating the correctness of a given big-M is as hard as the original
bilevel problem
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Wait! Are we Cheating?

- Pineda and Morales (2019): Heuristics for computing big-M values usually fail

- Kleinert et al. (2020): Validating the correctness of a given big-M is as hard as the original
bilevel problem

But ...

- Buchheim (2023): valid and poly-sized M can be computed in polynomial time
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Proof ... Continued

We have the MILP

min
X,y,€,2% 2,21

st

c'x+d"y

xeX, e=0

AX+ By +ee>a, Cx+Dy>b,e>0
B"A+D " u=f, e"A+n=0, A\, u,n>0

A< (1=2M, p < (1=2)M, n < (1—-2")M
AX+By+ee—a<z*M, Cx+Dy—b<z'M, e <z'M
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Proof ... Continued

We have the MILP
Wy € XHAY
st. xeX, e=0
AX+ By +ee>a, Cx+Dy>b,e>0
B"A+D " u=f, e"A+n=0, A\, u,n>0
A< (1=2M, p < (1=2)M, n < (1—-2")M
AX+By+ee—a<z*M, Cx+Dy—b<z'M, e <z'M

£ penalization of the coupling constrainte = 0

min c'x+d"y+ ke
X,y,€

st. all constraints except frome =0
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Proof ... Continued: What About x?

Home > Mathematical Programming > Article

Exact augmented Lagrangian duality for
mixed integer linear programming

Full Length Paper | SeriesA | Published: 21 April 2016

Volume161, pag 387,(2017) Citethisarticle

Download PDI @ Access provided by Universitit Trier Universitatsbibliothek

Mohammad Javad Feizollahi 53, Shabbir Ahmed & Andy Sun

£5) 2596 Accesses Exploreall metrics >
Abstract

We investigate the augmented Lagrangian dual (ALD) for mixed integer linear
programming (MIP) problems. ALD modifies the classical L ian dual by inga
nonlinear penalty function on the violation of the dualized constraints in order to reduce
the duality gap. We first provide a primal characterization for ALD for MIPs and prove that
ALD is able to asymptotically achieve zero duality gap when the weight on the penalty
function is allowed to go to infinity. This provides an alternative characterization and proof
of a recent result in Boland and Eberhard (Math Program 150(2):491-509, 2015,
Proposition 3). We further show that, under some mild conditions, ALD using any norm as

Feizollahi et al. (2016)

Theorem 4: duality gap for the augmented
Lagrangian dual of a solvable (mixed-integer)
linear optimization problem can be closed by
using a norm as the augmenting function
and a sufficiently large but finite penalty
parameter.

Proposition 1: Optimal solutions of MILP
reformulation and the /o, penalty problem
are the same

Gu et al. (2020)

Theorem 22: Penalty parameter can be
chosen to be of polynomial size in case of
the ¢o-norm
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Proof ... Continued: Back to the Slide Before
We have the MILP
min c'x+d'y
X,Y,€,2N zH 2"
st. xeX, =0,
Ax+ By +ee>a, Cx+Dy>b,e>0
B'A+D u=f, e"X+n=0, A p,n>0
AS(1=2M, p< (1=2)M, n < (1-2")M
AX+ By +ee—a<z*M, Cx+Dy — b <z'M, e <z"M

/. penalization of the coupling constrainte =0

min ¢ x+d"y+ ke
X,y,€

st. all constraints except frome =0

This is the KKT reformulation of the bilevel problem from the theorem!
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K ... One More Time!

Feizollahi et al. (2016) & Gu et al. (2020)

Existence of finite and poly-sized
exact penalty parameter.

Open (until last year)

Can it be computed in polynomial time?
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K ... One More Time!

EXACT AUGMENTED LAGRANGIAN DUALITY
FOR NONCONVEX MIXED-INTEGER NONLINEAR OPTIMIZATION

Feizollahi et al. (2016) & Gu et al. (2020)

. . . HENRI LEFEBVRE, MARTIN SCHMIDT
Existence of finite and poly-sized
AsstrACT. In the context of mixed-integer nonlinear problems (MINLPs),

exact pena lty param eter. it is well-known that strong duality does not hold in general if the standard

Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual
(ALD), which adds a nonlinear penalty function to the classic Lagrangian
H function. For this setup, we study conditions under which the ALD leads to a
Open (U ntil last yea r) zero duality gap for general MINLPs. In particular, under mild assumptions
and for a large class of penalty functions, we show that the ALD yields zero
. . . . duality gaps if the penalty parameter goes to infinity. If the penalty function
Can it be com p uted in po lyﬂ omial time? is a norm, we also show that the ALD leads to zero duality gaps for a finite
penalty parameter. Moreover, we show that such a finite penalty parameter
. can be computed in polynomial time in the mixed-integer linear case. This
Yes! Lemma 4 of Lefebvre and Schmidt (2024) generalizes the recent, rosults on lincarly constrained mixed-integor probloms by
Bhardwaj et al. (2024), Boland and Eberhard (2014), Feizollahi et al. (2016),

and Gu c al. (2020).



And what about the pessimistic case?
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Optimistic Bilevel Problems with and without Coupling Constraints

Optimistic bilevel problem without coupling constraints
: T : T,,.
min Fo(x) :=c¢c x+ myln {d y:ye S(x)}
S(x): set of optimal solutions to the x-parameterized optimization problem

min f'y st Cx+Dy>b
y
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Optimistic Bilevel Problems with and without Coupling Constraints

Optimistic bilevel problem without coupling constraints
: T : T,,.
min Fo(x) :=c¢c x+ myln {d y:ye S(x)}
S(x): set of optimal solutions to the x-parameterized optimization problem

min f'y st Cx+Dy>b
y

Optimistic bilevel problem with coupling constraints

. T . T,
min Foc(x) :=c¢ X+my|n{d y.yeS(x),Ax+By20}
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Pessimistic Bilevel Problems with and without Coupling Constraints

Pessimistic bilevel problem without coupling constraints
min  Fy(x) := ¢ x + max {dTy: y € S(X)}
xeX y

with
X :=Xn{x:S(x) # 0}

83



Pessimistic Bilevel Problems with and without Coupling Constraints

Pessimistic bilevel problem without coupling constraints
min  Fy(x) := ¢ x + max {dTy: y € S(X)}
xeX y
with
X :=Xn{x:S(x) # 0}
Pessimistic bilevel problem with coupling constraints
min  Foe(x) == c'x

xeX

st. Ax+By>a forally € S(x)
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Bye bye, coupling constraints ...

Pessimisticwith | alaZeng(2020) [ Optimistic with
coupling constraintsj 'Lcoupling constraints
T

Goal “old” paper

v e
Pessimistic withoutwl ( Optimistic without
coupling constraintsj\ Lcoupling constraints
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From Pessimistic to Optimistic Bilevel Optimization with Coupling Constraints

The pessimistic coupling constraint
Ax+By >a forally € S(x)
is equivalent to

Aix+Biy >a; forally e S(x)andallie [m]:={1,...,m}.
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From Pessimistic to Optimistic Bilevel Optimization with Coupling Constraints
The pessimistic coupling constraint
Ax+By >a forally € S(x)
is equivalent to

Aix+Biy >a; forally e S(x)andallie [m]:={1,...,m}.

Lemma (a la Zeng (2020))

Let x € X be given and consider a fixed i € [m]. Then, x satisfies the i-th coupling constraint if and
only if there exist y and

y[ € argmin {B,;y: Dy > b — Cx, ny < fTV}

that satisfy
D)_/ > b — CX, B;_y' > a; — AiXx.
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From Pessimistic to Optimistic Bilevel Optimization with Coupling Constraints

Theorem

Let S be the set of globally optimal solutions to the pessimistic bilevel problem with coupling
constraints. Moreover, let § be the set of globally optimal solutions to the optimistic single-leader
ulti-follower problem

min ¢ x+ mln {0: y' €8(x,7), By > a—Axforallie [m]}
(x.y)eX

with X = {(x,7): x € X,Dy > b — Cx}, §'(x,7) = argmin, {Bi.y': Dy’ > b—Cx,f 'y <f'y}, and
= (y)™,. Let S be the set of globally optimal solutions to the optimistic bilevel problem

min_ ¢ x+ mln {O: y € 5(x,7), B.y > a,—A.xforallie [m]} ,
(x.y)ex

where 5(x,y) denotes the set of optimal solutions to the aggregated lower-level problem
ZB,-.yi st. Dy'>b—Cx, f'yY <f'y forallie[m].

Then, S = prOJX(S) = proj (S) holds and all optimal objective function values coincide. 86



From Optimistic Bilevel Optimization with to without Coupling Constraints

Theorem (Simply apply the “old” optimistic result ...)

There is a poly-sized penalty parameter > 0 so that the optimistic bilevel problem with coupling
constraints has the same set of globally optimal solutions as the optimistic bilevel problem

. T . T . /
min ¢ x+rp’|8n{d Y + ke: (y,s)es(x)}

without coupling constraints, where S'(x) is the set of optimal solutions to the x-parameterized
lower-level problem

min f'y

Voe

st. Ax+By+ee>a,
Cx+ Dy > b,
e >0,

where e is the vector of all ones in appropriate dimension. Moreover, both bilevel problems have
the same optimal objective function value.



From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Let's consider
min_ Foa(X,7) :=c'x+d"y+ min {O: e=0,(v,e) € §(x,)7)} (AUX-UL)
(x,y)ex 12
with a single coupling constraint. Again, we use X = {(x,¥): x € X, Dy > b — Cx} and 5(x, ¥) denotes
the set of optimal points to
min f'y
e (AUX-LL)
st. Cx+Dy>b, f'y—fy=e, &>0.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Let's consider

min_ Foa(X,7) :=c'x+d"y+ min {O: e=0,(v,e) € §(x,)7)} (AUX-UL)
(x,y)ex 12
with a single coupling constraint. Again, we use X = {(x,¥): x € X, Dy > b — Cx} and 5(x, ¥) denotes
the set of optimal points to
min f'y
e (AUX-LL)
st. Cx+Dy>b, f'y—fy=e, &>0.

Lemma

For every bilevel feasible point x of the optimistic bilevel problem without coupling constraints, the
point (x,y) with y € arg miny{dTy: y € S(x)} is also bilevel feasible for the optimistic bilevel
problem (AUX-UL) with the same objective value. Moreover, for every globally optimal point (x,y) to
Problem (AUX-UL), x is bilevel feasible for the optimistic bilevel problem without coupling
constraints with the same objective value.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Lemma
There is a poly-sized parameter x > 0 so that Problem (AUX-UL) has the same set of globally
optimal solutions as the optimistic bilevel problem

M Fox(X,7) :=C x+d 'y + min {ns: (v,e) € §(x,)7)}
(x,7)eX Ve

without coupling constraints. Here, we again use X = {(x,y): x € X,Dy > b — Cx} and 5(x,y) is the
set of optimal solutions of (AUX-LL).
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Lemma

There is a poly-sized parameter x > 0 so that Problem (AUX-UL) has the same set of globally
optimal solutions as the optimistic bilevel problem

M Fox(X,7) :=C x+d 'y + min {ns: (v,e) € §(x,)7)}
(x,7)eX Ve

without coupling constraints. Here, we again use X = {(x,y): x € X,Dy > b — Cx} and 5(x,y) is the
set of optimal solutions of (AUX-LL).
Theorem

For any &, the optimistic bilevel problem without coupling constraints from the last lemma and its
pessimistic version

min_ Fpe(X, V) :=c' x+d" ¥+ max {na: (v,e) € §(x,)7)}
(x,y)ex V,e

have the same set of feasible and globally optimal solutions.
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From Optimistic to Pessimistic Bilevel Optimization without Coupling Constraints

Corollary

There is a poly-sized parameter k > 0 so that the optimistic bilevel problem without coupling
constraints has the same set of globally optimal solutions as the pessimistic bilevel problem

min_ Foe(X,¥) = c ' x+d "y + max {/-ca: (v,e) € §(x,37)}
(x.y)ex v.e

without coupling constraints.
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Bye bye, coupling constraints ...

Pessimisticwith | alaZeng(2020) [ Optimistic with
coupling constraintsj 'Lcou pling constraints

Goal, “old” paper

v h
Pessimistic withoutwl ( Optimistic without
coupling constraintsj\ Lcoupling constraints

9



Proof of the “a la Zeng (2020)" lemma

Let x € X be given and consider a fixed i € [m]. Then, the i-th coupling constraint is equivalent to
miny{Bi.y:y € S(x)} > a; — Ai.x, which can be reformulated as By > a; — Aj.x with

y' e arg min, {Bi.y:y € S(x)} . Now, let ¢ denote the optimal-value function of the lower-level
problem. It follows that x satisfies the i-th coupling constraint if and only if

B.y' >a;—A.x with y' €argmin {B,.y: Dy>b—Cx,fly< tp(X)}. (1)
y
We now show that the latter is equivalent to the stated conditions in the lemma. First, let us

assume that (1) holds. Then, there exists ¥ such that ¢(x) = f Ty and Dy > b — Cx is satisfied.
Hence, the conditions of the lemma hold.

Conversely, assume that the conditions of the lemma are satisfied. The feasibility of ¥ implies
min {B,:y: Dy>b—Cx,fly < fTY/} < min {Bf.y: Dy>b—Cx,fly< so(X)} :
y y

Hence, (1) is satisfied, which concludes the proof.
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The End

There is a lot more to discover and to study!

- Bilevel optimization with discrete variables

- Bilevel optimization with nonlinear lower-level problems
- Stochastic bilevel optimization

- Robust bilevel optimization

- Bounded rationality

- etc. etc. etc.
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The End

There is a lot more to discover and to study!

- Bilevel optimization with discrete variables

- Bilevel optimization with nonlinear lower-level problems
- Stochastic bilevel optimization

- Robust bilevel optimization

- Bounded rationality

- etc. etc. etc.

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization
In: EURO Journal on Computational Optimization. 2021
Jointly with Thomas Kleinert, Martine Labbé, and Ivana Ljubic

A Gentle and Incomplete Introduction to Bilevel Optimization
Publicly available lectures notes
Jointly with Yasmine Beck

93



BOBILib: Bilevel Optimization (Benchmark) Instance Library

- More than 2600 instances of mixed-integer linear bilevel optimization problems
- Well-curated set of test instances
- Freely available for the research community

- Testing of new methods + comparison with other ones
- Different types of instances

- Interdiction
- Mixed-integer
- Pure integer

- Benchmark sets for all of them
- Extensive numerical results
- New data + solution format

- All best known solutions available

https://bobilib.org
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